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ABSTRACT

This work explores if combining information from multiple Magnetic Reso-

nance Imaging (MRI) modalities provides improved interpretation of brain biological

architecture as each MR modality can reveal different characteristics of underlying

anatomical structures. Structural MRI provides a means for high-resolution quan-

titative study of brain morphometry. Diffusion-weighted MR imaging (DWI) allows

for low-resolution modeling of diffusivity properties of water molecules.

Structural and diffusion-weighted MRI modalities are commonly used for mon-

itoring the biological architecture of the brain in normal development or neurodegen-

erative disease processes. Structural MRI provides an overall map of brain tissue orga-

nization that is useful for identifying distinct anatomical boundaries that define gross

organization of the brain. DWI models provide a reflection of the micro-structure

of white matter (WM), thereby providing insightful information for measuring lo-

calized tissue properties or for generating maps of brain connectivity. Multispectral

information from different structural MR modalities can lead to better delineation of

anatomical boundaries, but careful considerations should be taken to deal with in-

creased partial volume effects (PVE) when input modalities are provided in different

spatial resolutions. Interpretation of diffusion-weighted MRI is strongly limited by

its relatively low spatial resolution. PVE’s are an inherent consequence of the limited

spatial resolution in low-resolution images like DWI.

This work develops novel methods to enhance tissue classification by address-
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ing challenges of partial volume effects encountered from multi-modal data that are

provided in different spatial resolutions. Additionally, this project addresses PVE in

low-resolution DWI scans by introducing a novel super-resolution reconstruction ap-

proach that uses prior information from multi-modal structural MR images provided

in higher spatial resolution.

The major contributions of this work include: 1) Enhancing multi-modal tissue

classification by addressing increased PVE when multispectral information come from

different spatial resolutions. A novel method was introduced to find pure spatial

samples that are not affected by partial volume composition. Once detecting pure

samples, we can safely integrate multi-modal information in training/initialization of

the classifier for an enhanced segmentation quality. Our method operates in physical

spatial domain and is not limited by the constraints of voxel lattice spaces of different

input modalities. 2) Enhancing the spatial resolution of DWI scans by introducing a

novel method for super-resolution reconstruction of diffusion-weighted imaging data

using high biological-resolution information provided by structural MRI data such

that the voxel values at tissue boundaries of the reconstructed DWI image will be in

agreement with the actual anatomical definitions of morphological data.

We used 2D phantom data and 3D simulated multi-modal MR scans for quan-

titative evaluation of introduced tissue classification approach. The phantom study

result demonstrates that the segmentation error rate is reduced when training samples

were selected only from the pure samples. Quantitative results using Dice index from

3D simulated MR scans proves that the multi-modal segmentation quality with low-
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resolution second modality can approach the accuracy of high-resolution multi-modal

segmentation when pure samples are incorporated in the training of classifier. We

used high-resolution DWI from Human Connectome Project (HCP) as a gold stan-

dard for super-resolution reconstruction evaluation to measure the effectiveness of our

method to recover high-resolution extrapolations from low-resolution DWI data using

three evaluation approaches consisting of brain tractography, rotationally invariant

scalars and tensor properties. Our validation demonstrates a significant improve-

ment in the performance of developed approach in providing accurate assessment of

brain connectivity and recovering the high-resolution rotationally invariant scalars

(RIS) and tensor property measurements when our approach was compared with two

common methods in the literature.

The novel methods of this work provide important improvements in tools that

assist with improving interpretation of brain biological architecture. We demonstrate

an increased sensitivity for volumetric and diffusion measures commonly used in clin-

ical trials to advance our understanding of both normal development and disease

induced degeneration. The improved sensitivity may lead to a substantial decrease in

the necessary sample size required to demonstrate statistical significance and thereby

may reduce the cost of future studies or may allow more clinical and observational

trials to be performed in parallel.
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PUBLIC ABSTRACT

This work explores if combining information from multiple Magnetic Reso-

nance Imaging (MRI) modalities provides improved interpretation of brain biological

architecture. Structural MRI and diffusion-weighted MR imaging (DWI) are com-

monly used modalities for monitoring the biological architecture of the brain in normal

development or neurodegenerative disease processes. This work emphasizes on the

issue of increased partial volume effects (PVE) when multispectral information from

different structural MR modalities are used for tissue classification of brain anatomical

structures. Novel methods are developed that lead to better delineation of anatom-

ical boundaries by addressing challenges of PVE algorithmically. Additionally, this

study addresses PVE in low-resolution DWI by introducing a novel super-resolution

reconstruction approach that uses anatomical priors from high biological-resolution

information provided by structural MRI data.

The novel methods of this work provide important improvements in tools that

assist with improving interpretation of brain biological architecture. We demonstrate

an increased sensitivity for volumetric and diffusion measures commonly used in clin-

ical trials to advance our understanding of both normal development and disease

induced degeneration. The improved sensitivity may lead to a substantial decrease in

the necessary sample size required to demonstrate statistical significance and thereby

may reduce the cost of future studies or may allow more clinical and observational

trials to be performed in parallel.
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CHAPTER 1
SIGNIFICANCE AND BACKGROUND

1.1 Introduction

This work develops novel methods that incorporate information from multi-

ple imaging modalities for improved interpretation of brain anatomical structures

from magnetic resonance imaging (MRI) data. The project is organized around

two primary efforts: 1) First, novel methods are developed to enhance multispec-

tral tissue classification by incorporating complementary information from multiple

structural MR modality scans with different spatial resolutions. The approach allows

information acquired from low-resolution MR scans (i.e. T2-weighted, PD-weighted

or FLAIR) to improve segmentation quality over previously produced results that

utilized only high-resolution T1-weighted structural MR images by addressing the

challenges of partial volume effects that are encountered from multi-modal data. 2)

Second, we develop a novel method for super-resolution reconstruction using the prior

anatomical information extracted from high spatial resolution images to improve bi-

ological interpretation of low-resolution modality sources. For example, we incorpo-

rate the high biological resolution of brain anatomy description from structural MR

(T1/T2-wighted) scans to improve the super-resolution reconstruction of diffusion-

weighted imaging (DWI) data from the same subject. The developed method aims

to increase the biological interpretability of input low-resolution DWI to a high-

resolution DWI by a factor of 8 (2.03 mm3).
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This research project focuses on challenges encountered in processing of a het-

erogeneous dataset in multi-center neurodegenerative studies like PREDICT-HD [1]

study of Huntington’s Disease (HD). We describe novel approaches for the segmenta-

tion and super-resolution reconstruction (SRR), that help improve interpretability of

data and can, for example, increase the sensitivity of volumetric and diffusion mea-

sures used by clinicians to improve the clinical and observational trials to test thera-

pies that may slow the progression of disease. Increasing the sensitivity of measures

can also reduce the number of samples needed for longitudinal and cross-sectional

analysis that can potentially reduce the cost of future studies.

In multi-center studies of neurodegenerative disorders such as Alzheimer’s dis-

ease, Schizophrenia and Huntington’s Disease, different MR modalities are often ac-

quired at each scanning session, since each scan modality reveals different character-

istics of underlying biological architecture. There are several types of MR contrasts

that result in different MR modality images:

1. Static contrast that is sensitive to relaxation properties of the spins (T1 and

T2 relaxations). Several structural MR modalities (T1-weighted, T2-weighted,

Proton density (PD), and Flair) are generated based on static contrast [2, 3, 4].

2. Endogenous contrast that depends on intrinsic properties of tissues (e.g. fMRI

BOLD) [5].

3. Exogenous contrast that depends on an injected agent contrast like Gadolinium

(Gd). An example of MR image modality using this type of contrast is dynamic

contrast-enhanced T1-weighted MRI (DCE-MR) [6].
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4. Motion contrast that is sensitive to movement of spins through space e.g.

diffusion-weighted imaging (DWI) modality that is generated based on diffu-

sion patterns of water molecules in biological tissues under different sensitizing

gradient directions [7].

The algorithmic developments presented in this work are focused on structural

and diffusion-weighted MR modalities. T1-weighted MR is the most used modality

for the segmentation of brain anatomical structures; however, it is hard to distinguish

all biological tissue types (e.g. CSF from the bone marrow, or the gray matter from

the blood vessels) by looking only at T1 scan. Using complementary information

from other modalities (e.g. T2-weighted scan) can provide better contrast in the case

of above-mentioned T1-only tissue type ambiguities. However, if T2-weighted scan is

provided in lower spatial resolution, it can adversely affect the multi-modal segmen-

tation results as it increases partial volume effects (PVE) issue in tissue boundaries.

Diffusion-weighted imaging (DWI) is another modality that maps water molecule

diffusion patterns in biological tissue that can reveal abnormalities in white matter

fiber structure and provides models of brain connectivity. Multiple 3D volumes are

collected in a single 4D DWI scan, where each 3D volume quantifies diffusion in a dif-

ferent direction. The different sensitizing gradient directions are created by changing

the direction of pulsed gradient fields. In a 4D DWI scan, a baseline image or b0 image

without diffusion weighting is also needed to quantify the diffusion in the DWI data.

Diffusion-weighted MR imaging been shown to be sensitive to microscopic degenera-

tion of white matter that is not measurable in structural MRI. Measuring diffusion
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properties of functional white matter areas in the time course of degeneration will

help us to advance our understanding of neuropathological basis in neurodegenerative

diseases. DWI is, however, strongly limited by its relatively low spatial resolution. A

DWI voxel volume is approximately 8 times larger than that of a typical structural

MRI.

The first part of this research project develops novel methods to use comple-

mentary information from multiple modalities to enhance the classification results

previously generated from high-resolution structural MRI data alone. The second

part uses high biological-resolution information provided by structural MRI data for

guiding super-resolution reconstruction of each of the 3D DWI sub-volume gradients

to provide more biologically interpretable DWI analysis results.

1.1.1 Thesis Aims

This project is organized around two specific aims:

Aim 1: Enhance tissue classification by incorporating multiple modal-

ities with different spatial resolutions

We show increased sensitivity and interpretability of data by carefully using

information from multiple modality channels. We develop a novel method to overcome

the challenges of partial volume effects that are encountered from multi-modal data

(especially at different resolutions).

The challenges are described and compared against failures that occur when

näıvely adding multiple modalities.
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• Subtask 1: Tissue classification of large-scale multi-site heterogeneous

MR data using fuzzy k-nearest neighbor method

This subtask aims to improve automated classification of brain tissues for multi-

center 3D MRI data analysis. Previous studies have developed a robust multi-

modal tool for automated registration, bias-field correction and tissue classifica-

tion based on expectation maximization (EM) method [8] that is group specific

and uses a priori knowledge for all the subjects in an atlas-based approach. In

subtask 1, however, we emphasized the importance of a non-parametric model’s

utility in neurodegenerative diseases, since each subject has unique anatomi-

cal states in longitudinal degenerative studies that may not be represented by

prior probability distributions. Enhancements are suggested by augmenting the

EM -based classification using a fuzzy k-nearest neighbor (k-NN) classifier that

builds up a model for each individual subject and complements the classifica-

tion results that EM produces. Fuzzy k-NN is a non-parametric algorithm, that

means it does not make any assumptions on the underlying data distribution

and is not biased by prior probability distributions; therefore, it can comple-

ment the results of a Gaussian distribution based mixture method in complex

decision boundaries.

• Subtask 2: Enhance multi-modal classification when complementary

information comes from a second modality with lower spatial resolu-

tion

The second task investigates the partial volume effect (PVE) on multi-modal
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classification when one modality channel provides information in lower spatial

resolution. Partial volume effect complicates the segmentation process, and,

due to the complexity of human brain anatomy, addressing the PVE issue is a

critical factor for accurate brain structure classification from multiple modal-

ities. Therefore, a novel method is developed to identify spatial samples that

are not affected by partial volume composition, termed as pure samples, to

train/initialize the classification algorithms.

Aim 2: Super-resolution reconstruction of low-resolution diffusion-weighted

imaging data using a priori knowledge of anatomical structure

The second aim introduces novel approaches to use the high-resolution rep-

resentation of anatomical structures provided by the structural MR data as a priori

knowledge to enhance the resolution (in a biologically relevant manner) of diffusion-

weighted imaging (DWI) data.

The use of diffusion-weighted imaging data is limited by its relatively low

spatial resolution. The resolution of a typical DWI data is 2×2×2mm3, that is 8 times

larger than that in structural MRI. The goal of this section is to increase the spatial

resolution of an input DWI scan to match the typical anatomical resolution presented

in the isotropic (1 mm3) voxel of structural MR images. However, using only basic

interpolation techniques to resample the input DWI data to a higher resolution lattice

space introduces no new information or improvement to interpretation of data that

can help further medical imaging analysis. This aim investigates the use of tissue
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boundary information from the high-resolution structural MRI data to achieve an

edge-guided super-resolution reconstruction of DWI scans based on a weighted total

variation (WTV) approach, where the voxel values at tissue boundaries will be in

agreement with the actual anatomical definitions of morphological data.

1.1.2 Thesis Overview

This thesis is organized in five chapters as follows:

• The remaining of Chapter 1 provides an overview of the technical background

utilized in this work and summarizes the previous works for addressing the

challenges caused by partial volume effects.

• Chapter 2 explains the methods and validation performed to enhance the tissue

classification of large-scale multi-site heterogeneous MR data by augmenting

the EM -based classification using a fuzzy k-nearest neighbor (k-NN) classifier.

• Chapter 3 describes the advantage of using information from multiple modality

channels in the segmentation of human brain and explains the challenges of

partial volume effects that are encountered from multi-modal data (especially

at different resolutions). Finally, it describes the methods and validations per-

formed to address the identified challenges and compares the results against

failures that occur when data are näıvely added from multiple modalities.

• Chapter 4 provides information regarding the methods and validations per-

formed for an edge-guided weighted total variation (WTV) super-resolution

reconstruction approach to increase the spatial resolution of diffusion-weighted
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imaging data using a priori knowledge of anatomical structures derived from

corresponding structural MR data acquired in higher spatial resolution.

• Chapter 5 concludes the remarks of this work.

1.2 Structural MRI Principles

Magnetic Resonance Imaging (MRI) is a medical imaging technique that uses

magnetic fields, radio waves, and field gradients to image the anatomy and the phys-

iological processes of the body. This section is an overview on the basic concepts

of MR imaging provided in [2, 3, 4]. Magnetic resonance (MR) phenomenon was

discovered by Felix Bloch and Edward Purcell independently in 1946. The nuclear

magnetic resonance imaging is based on the concept that the nuclei of some atoms

absorb and re-emit radio frequency when placed in a magnetic field.

MRI techniques for human scanning are almost exclusive to measuring hydro-

gen atoms associated with fat and water molecules. Protons in the nuclei of hydrogen

atoms are positively charged and spin about their axis, so they acts like tiny magnets

in our body. These tiny magnets are randomly oriented, so their magnetic fields can-

cel out. However, when we place these protons in a strong magnetic field, they will

tend to align in parallel or anti-parallel to the magnetic field. While the magnetic

fields from many protons will cancel out, a slight excess of the protons will produce

a net magnetization parallel to the main magnetic field that is also called the longi-

tudinal direction. This net magnetization becomes the source of our MR signal [3].

This is illustrated in Figure (1.1).
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Figure 1.1: Hydrogen protons are oriented randomly and their magnetic fields cancel

out when there is no external magnetic field. However, when a strong external mag-

netic field (B0) is applied, protons are aligned with B0 field and a net magnetization

will be produced parallel to the main magnetic field also called longitudinal direction

(Pooley, 2005).
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The force from the magnetic field interacts with the spinning protons and

results in precession of the protons. This precessional frequency is determined from

the Larmor equation:

f = γ ×B0
(1.1)

Where f is the frequency of precession, B0 is the main magnetic field strength, and

γ is gyromagnetic ratio that is a characteristic of each type of nuclei and is equal to

42.6 MHz/T (Megahertz per Tesla) for hydrogen protons.

Applying a radio frequency (RF) pulse at the Larmor frequency of the protons

causes resonance and an efficient energy transfer from the RF coil to the protons.

A brief exposure of RF pulse causes the net magnetization rotates away from the

longitudinal direction, which results in a decrease in the longitudinal magnetization

while increases the transversal magnetization (Figure 1.2). The amount of rotation

from the longitudinal direction is called as the flip angle and depends on the strength

and duration of RF pulse. After the RF pulse, the longitudinal magnetization will

grow back over time in a direction parallel to the main magnetic field, while transversal

magnetization decreases as it begins to dephase.

The time that it takes the longitudinal magnetization to grow back to 63%

of its final value is described by a time constant called longitudinal relaxation or

T1 relaxation and is a characteristic of tissue. The different rate of regrowth of

longitudinal magnetization for different tissues is the fundamental source of contrast

in T1-weighted images (Figure (1.3 a)). White matter has a very short T1 time and

relaxes rapidly. Cerebrospinal fluid (CSF) has a long T1 and relaxes slowly. Gray
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Figure 1.2: (Left) prior the RF pulse, the net magnetization is parallel to the longitu-

dinal direction. (Center and Right) When RF pulse is applied at Larmor frequency,

its energy is absorbed by the protons that rotates the net magnetization from z axis

causing a decrease in longitudinal direction and an increase in transversal direction.

This figures shows a 90◦ RF pulse (Pooley, 2005).

matter has an intermediate T1 and relaxes at an intermediate rate.

Also, the time that it takes the transverse magnetization to decrease to 37%

of its starting value is described by a time constant called transversal relaxation or

T2 relaxation that provides another contrast mechanism in MR images. Different

tissues have different values of T2 and dephase at different rates (Figure (1.3 b)).

White matter has a short T2 and dephases rapidly. CSF has a long T2 and de-

phases slowly. Gray matter has an intermediate T2 and dephases intermediately.

T1-weighted and T2-weighted contrasts present distinguished characteristics for an

identical tissue types as shown in Figure (1.3). This complimentary intensity profile

between T1- and T2-weighted MRI for a certain tissue type often allows a better
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delineation of tissue types.

To create different contrasts, there are several MR pulse sequences to control

the timing of certain events during MR acquisition. The events include RF pulses

and the signal that is formed from these pulses. Other events in a pulse sequence are

related to the time and duration of gradient pulses. Gradients are applied to alter

the main magnetic field in a predictable fashion and are responsible for localizing the

signals from protons located at different positions. Frequency encoding and Phase

encoding gradients are applied for individual voxel localization. More details on

different pulse sequences are provided in [2, 4]. Study the concepts of MR acquisition

is important to understand the source of different MR artifacts [9] and enables the

design of optimized post-processing algorithms to enhance the MR image qualities.

1.3 Diffusion-Weighted Imaging

Diffusion Weighted Imaging (DWI) is an imaging method based upon mea-

suring the Brownian motion of water molecules to generate contrast in MR images.

Diffusion is measured with a pulsed gradient spin echo (PGSE) technique developed

by Stejskal and Tanner [10]. As shown by Figure (1.4), this sequence applies symmet-

ric, strong diffusion-sensitizing gradients (DG’s) on either side of the 180◦-pulse to

spatially encode diffusion. The DG pair does not affect the phases of stationary spins

since any phase accumulation from the first gradient lobe is reversed by the second

one. However, diffusing spins move into different locations between the first and sec-

ond lobes and loose signal due to falling out of phase, so they will look darker in the
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(a) T1-weighted

(b) T2-weighted

Figure 1.3: (a) T1 relaxation is defined as the time that it takes the longitudinal

magnetization to grow back to 63% of its final value. Different tissues have different

rates of T1 relaxation. A T1-weighted image is obtained at a time when the T1

relaxation curves are widely separated. (b) T2 relaxation is defined as the time

that it takes the transverse magnetization to decrease to 37% of its starting value.

Different tissues have different rates of T2 relaxation. T2-weighted contrast will be

maximized when the image is obtained at a time when the T2 relaxation curves

are widely separated (Pooley, 2005). T1 and T2 contrasts provide complementary

intensity profiles for a certain tissue.
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Figure 1.4: The basic diffusion-weighted pulse sequences originated from the Stejskal-

Tanner pulsed gradient spin echo technique. The paired diffusion-sensitizing gradients

does not affect stationary spins, but diffusing spins are dephased by moving into

different locations between the first and second gradients. “Courtesy Allen D. Elster,

MRIquestions.com”.

output image. The faster the spins move in the direction of the diffusion-sensitizing

gradient, the greater the signal loss [10, 11].

Immediately following the second DG, a rapid image acquisition module is

applied to minimize the effects of bulk motion on the diffusion-weighted images.

This module is typically an echo-planar sequence using rapidly oscillating phase and

frequency gradients that generate multiple gradient echoes.
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To generate 4D diffusion-weighted images (DWI), the DW pulse sequence is

first run with the DG’s turned off or set to a very low value. A DWI image without a

diffusion-sensitizing gradient looks similar to a standard morphometric T2-weighted

image because it is basically an echo-planar image (EPI). They are called b0 (“b-zero”)

images and will serve as a baseline for later calculated maps. The DW sequence is

then run with the DG’s turned on individually or in combination and at various

strengths. This produces DW source images sensitized to diffusion in multiple differ-

ent directions. These gradient scans have areas of signal loss that represents diffusion

occurring during the scan.

Signal loss is also dependent on the strength and duration of the diffusion-

sensitizing gradient field, also known as the diffusion-weighted factor or b factor (units

= sec/mm2), and D, the apparent diffusion coefficient or ADC (units = mm2/sec).

D is the velocity measure of diffusion. The stronger the diffusion, the greater the

apparent diffusion coefficient [12]. The formula for b is:

b = γ2G2δ2(∆− δ/3) (1.2)

Where γ is the gyromagnetic ratio, ∆ is the time interval between the two diffusion

gradient pulses, while G is the magnitude and δ is the duration of each of gradient

pulses. If S0 is the MR signal at baseline, without diffusion-sensitizing gradients, the

signal S after applying the diffusion gradients is given by:

S = S0e
−bD (1.3)

The value of b is selected by the operator prior to imaging. The choice of b-value
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controls the degree of observed diffusion-weighting similar to the way choosing TE

affects T2-weighted MRI. Thus, diffusion may be thought of as another relaxation

mechanism in addition to T1 and T2. The diffusion becomes the dominant relaxation

mechanism of tissue contrast when diffusion gradients are applied.

The b factor is a predetermined parameter for the scanning protocol, S and

S0 are empirically measured by the scanner during each image acquisition, and D

is estimated after the scan from equation (1.3) to quantify the diffusion from the

imaging information:

D = (ln(S0)− ln(S))/b (1.4)

1.4 Diffusion Tensor Imaging

The scalar, D, can also be expressed as a vector, D, that contains the six

unique components of the estimated symmetric diffusion tensor. D can be calculated

at each voxel to produce a diffusion tensor image (DTI) that is one of the most

popular models for estimating diffusion. Diffusion tensor imaging (DTI) is a special

kind of DWI that provides quantitative information with which to visualize and study

of white matter connectivity in the brain. Each voxel of DTI contains a 3×3 diffusion

tensor that is a symmetric semi-definite matrix modeling the local diffusion within

the voxel.
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1.4.1 Tensor Estimation

Diffusion Tensor (DT) is the covariance matrix of a Gaussian distribution that

models the local diffusion at the voxel level.

D =

Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

 (1.5)

Note that D is a symmetric matrix with six unique components. Diffusion tensors are

estimated within each voxel from a 4D DWI data based on Stejkal-Tanner equation,

where at least six diffusion scans and one b0 image are needed. Consider the Stejkal-

Tanner equation:

Si = S0e
−bgTk Dgk (1.6)

The b factor is a predetermined parameter for the scanning protocol. S0 is the the

baseline signal, without diffusion-sensitizing gradients, and Si is the diffusion signal

after applying the diffusion gradients gi:

gi = [Gx, Gy, Gz]
T (1.7)

A simple approach to estimate D is the “H” approach. We can solve equation

(1.6) in terms of D:

−ln(
Si
S0

)/b = (G2
xiDxx +G2

yiDyy +G2
ziDzz + 2G2

xiGyiDxy + 2G2
xiGziDxz + 2G2

yiGziDyz)

(1.8)

Where the subscript i denotes each gradient direction pulse. Using matrix algebra is

one approach to solve this system of equation. Let express D as a six-element column

vector, d to express the six unique diffusion tensor elements:

d = [Dxx, Dyy, Dzz, Dxy, Dxz, Dyz]
T (1.9)
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Each gradient encoding matrix is derived from the normalized gradient com-

ponents, Gxi, Gyi, and Gzi, (for i = 1 to M number of gradients) and is represented

as a six-element row matrix, Hi (Eq. 1.10). The Hi vectors are combined into a large

M × 6 matrix, where M is the number of gradient measurements whose b > 0.

Hi = [G2
xi, G

2
yi, G

2
zi, 2GxiGyi, 2GxiGzi, 2GyiGzi] (1.10)

H =

G2
x1 G2

yi G2
zi 2GxiGyi 2GxiGzi 2GyiGzi

...
...

...
...

...
...

G2
xM G2

yM G2
zM 2GxMGyM 2GxMGzM 2GyMGzM

 (1.11)

Observed data is expressed as the individual measured ADCs. Let’s define the Y

matrix for the left side of equation (1.8) as:

Yi = ln

(
S0

Si

)
/b (1.12)

Y =

[
ln
(
S0

S1

)
b

,
ln
(
S0

S2

)
b

, · · · ,
ln
(
S0

SM

)
b

]T
(1.13)

where Si is the observed signal for the gi gradient (Eq. 1.7). Note that Y is a

volumetric image with noisy data and is expressed as:

Y = Hd + η (1.14)

for each acquisition. If M = 6, d can be determined by the following calculation

(where η = 0 since η is not able to be distinguished from d) [13]:

(H−1H)d = d = H−1Y (1.15)

However, if M > 6, the pseudoinverse of the H matrix must be used since H

is not a square matrix and thus has no true inverse. The equation (1.14) can still be
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solved by first calculating the Hψ that is the pseudoinverse of H:

HψH = I6×6 (1.16)

The matrix product HTH can be formed as a square 6 × 6 matrix and thus

has a true inverse. Assumed that η = 0 in equation (1.14):

HTY = HTHd

(HTH)−1HTHd = d = (HTH)−1HTY

Hψ = (HTH)−1HT (1.17)

The pseudoinverse can also be obtained through singular value decomposition

(SVD). The H matrix is decomposed into the product of three matrices (U, V, and

W):

U = M × 6 column orthogonal

V = 6 × 6 row and column orthogonal

W = 6 × 6 diagonal

VVT = I6×6

UTU = I6×6

(W−1)ij =
1

Wij

H = UWVT (1.18)

and the pseudoinverse of H can be derived by [13]:

VW−1UTH = VW−1UTUWVT = I6×6 (1.19)
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Hψ = (HTH)−1HT = VW−1UT (1.20)

This section provided the basic concepts to understand the tensor estimation

from diffusion-weighted imaging components. More details on other tensor estimation

approaches are provided in [14, 13].

1.4.2 Correct Errors in Estimation of Diffusion Tensors

Modeling of water diffusion in the diffusion tensor imaging (DTI) provides

a unique noninvasive approach to investigate and characterize the microstructural

properties of white matter tissues in brain. Several rotationally invariant scalars

(RISs) are calculated to measure important information from the diffusion tensors.

However, interpretations and comparisons of these RISs are influenced by the accuracy

of the diffusion tensor estimates. The presence of noise in DWI measurements can

cause error in estimation of diffusion tensors.

In DTI estimation, diffusion tensors are formally constrained to be in the form

of symmetric positive semidefinite square (3 × 3) matrices. The eigenvalues of a

proper symmetric positive semidefinite diffusion tensor D are always non-negative.

Therefore, all scalars derived from a valid tensor assume the use of λ1 >= λ2 >=

λ3 >= 0 to refer to the eigenvalues of the symmetric positive semidefinite diffusion

tensor D.

However, estimated tensors are not guaranteed to be always positive semidef-

inite due to the presence of noise in the measurement of DWI images. Skare et al.

has investigated the probability of obtaining negative eigenvalues as a function of
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Figure 1.5: The probability of obtaining negative eigenvalues for the ’rice’ shaped

diffusion tensor as a function of λ1/λ3 at different noise levels (Skare et al., 2000).

λ1/λ3 for “rice” shaped diffusion tensors at different noise levels (%1 to %5) (Figure

1.5) [15]. Skare demonstrates that negative values happen more likely with increasing

noise. Negative eigenvalues mainly occur in regions with high diffusion anisotropy

such as the corpus callosum and the corticospinal tract due to more signal drop, and

it may cause the FA, that is ranging from 0 to 1 theoretically, to exceed unity.

Several solutions are suggested in this regards. Some studies suggested to

address noise in original DWI data. Using a moderate smoothing filter helps to

increase signal to noise ratio (SNR) so that the risk of negative eigenvalues become

negligible. Some other studies applied constrained estimation of diffusion tensors

to ensure positive semidefinite (PSD). Koay et al. describes two linear and non-

linear constrained least squares methods for eliminating the negative eigenvalues [16].
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Neithammer et al. [17] restricts the estimated tensor to the PSD manifold using a

gradient descent scheme for tensor estimation.

In this study, we enhanced DTIProcess and DTIEstim tools by applying the

following suggestions to address negative eigenvalues issue:

• Correct eigenvalue measures after Tensor decomposition.

– Calculate rotationally scalar values (RISs) with negative eigenvalues reset

to zero.

– Calculate RISs using absolute values of eigenvalues.

A new flag named “–correction { zero/abs }” is added to DTIProcess and

DTIEstim to avoid negative eigenvalues in DTI image before the construction

of rotationally invariant scalars.

• Apply correction mechanisms to the estimated tensors to ensure positive semidef-

initeness.

– Correct the invalid estimated tensor D by finding its nearest symmetric

positive semidefinite matrix [18].

This method is incorporated to DTIProcess and DTIEstim tools by adding a

new option called “–correction {nearest}”.

Figure 1.6 compares the DTI estimation without any correction to the ex-

plained 3 correction methods added to DTIEstim. It looks like that “nearest” option

is visually cleaner and seems more biologically plausible. Therefore, this option was

used in our data processing pipeline [19].
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Figure 1.6: Comparison of tensor estimation with and without correction methods.

Top left: results without correction. Top right: absolute value of eigenvalues are used.

Bottom left: negative eigenvalues are reset to zero. Bottom right: nearest symmetric

positive semidefinite matrix is found for each invalid tensor, which shows visually

cleaner results.
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Table 1.1: Summary of commonly used DTI scalars.

RIS Name Formula Interpretation

Fractional anisotropy FA =
√

3[(λ1−MD)2+(λ2−MD)2+(λ3−MD)2]

2(λ21+λ22+λ23)
Shape of diffusion

Mean diffusivity MD = λ1+λ2+λ3
3

Diffusion tensor
trace average;
size of diffusion

Radial diffusivity RD = λ2+λ3
2

Transverse
diffusion

Axial diffusivity AD = λ1 Longitudinal
diffusion

After correcting the invalid tensors, several rotationally invariant scalars (FA,

MD, RD, and AD) were computed by DTIProcess. Based on the assumption of

λ1 >= λ2 >= λ3 >= 0, all RIS images now have all non-negative values.

1.4.3 Calculation of Rotationally Invariant Scalars (RISs)

Rotationally invariant scalars (RISs) are numeric representations of diffusion

shape and magnitude [20] and are generated from resulting eigenvalue decomposi-

tion of diffusion tensors. They are important measures for clinicians and are useful

biomarkers of disease progression. Four scalars derived from the tensor model of

diffusion are often used and are referred as DTI scalars as well, including fractional

anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD), and axial diffusivity

(AD). A summary of these commonly used DTI scalars is presented in Table (1.1)

[14] .
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FA reflects anisotropy of the diffusion ranging from 0 to 1. The MD (often

called the apparent diffusion coefficient or ADC) is simply the trace of diffusion matrix

divided by three, which is equivalent to the average of the eigenvalues [21]. FA and

MD are commonly used measures of diffusivity because they summarize general shape

and magnitude of diffusion, respectively, by accounting for diffusion magnitudes along

three orthogonal directions at once [22]. FA is a summary measure of microstructural

integrity. Larger axon diameter or lower packing density of axons both reduce the FA

[23]. We expect to see lower FA in the areas where tract degeneration was expected

to occur. However, reduced FA alone may not be able to fully capture changes in

axonal integrity when changes in diffusion are subtle in one or two of the orthogonal

directions. It may be more helpful to examine these subtle changes using directional

measures of diffusivity to see diffusion magnitudes perpendicular and parallel to the

first eigenvector [24]. MD is an inverse measure of the membrane density, so an

increase of MD is expected where tract degeneration was expected to occur.

Axonal diffusivity (AD) is the magnitude of diffusion parallel to the principal

direction of diffusion and decreases with axonal injury and degeneration [25]. Radial

diffusivity (RD) is the magnitude of diffusion perpendicular to the principal direction

of diffusion and increases with demyelination/dysmyelination [25, 26, 27]. When

using measures of directional diffusivity (RD and AD), it is common to see changes

in both RD and AD in a given region because the processes that cause changes in

these measures (axonal death and demyelination) often occur in close proximity [25].

However, it is not always the case! An increase in RD with no change in AD has
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been documented in a very specific type of myelin pathology called dysmyelination.

Dysmyelination is the incomplete myelination of functional axons, as opposed to

demyelination that is the loss of myelination [26, 27].

1.4.4 Units of Rotationally Invariant Scalars

Diffusion or Brownian motion refers to a random, microscopic movement of

water and other small molecules due to their thermal energy at temperatures above

zero. Based on Einstein diffusion equation [28] , the diffusion tensor D (equation 1.5)

has the unit of (mm2/s) proportional to the mean squared-displacement divided by

the number of dimensions and the diffusion time.

One can think of that intuitively because diffusion is the flux of particles across

a surface in a period of time, the units of D are of the form area/time.

The unit of the eigenvalue is the same as the unit of the matrix itself. This

becomes evident from the eigenvalue equation:

Dv = λv (1.21)

Therefore, all the eigenvalues (λ1,λ2,λ3) have the unit of (mm2/s). As a re-

sult, mean diffusivity (MD), axial diffusivity (AD) and radial diffusivity (RD) have

the unit of (mm2/s), since they are computed from eigenvalues. However, Frac-

tional Anisotropy (FA) is dimensionless ranging from 0 (isotropic diffusion) to 1 (high

anisotropy) [20]. Also, the unit for Frobenius norm is the same as the unit of diffusion

tensor matrix (mm2/s) since Frobenius norm is directly computed from tensor matrix
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elements:

‖D‖F =
√
trace(D∗D) =

√√√√ 3∑
i=1

3∑
j=1

|Dij|2 (1.22)

Finally, note that all computed statistics (standard deviation, mean, maxi-

mum, minimum, and median) have the same unit as the data.

e−bD will be dimensionless, the units of b-value should be the inverse of tensor

D. In other words, b should be expressed as [time/area]. Typical b-values available

on modern MRI scanners range from 0 to about 4000 s/mm2.

The optimal choice of b-value depends upon field strength, number of signals

averaged, anatomical features, and predicted pathology. A higher b-value results in

more diffusion weighting but also more noise. Mechanical vibration artifacts may

also be a problem as b-values are increased. Although it is not clearly defined, most

routine clinical DWI currently use b-values between 0 and 1000 [29].

1.4.5 Distance Metrics for Diffusion Tensors

One key factor in analysis of Diffusion Tensor Imaging (DTI) datasets is a

proper choice of diffusion tensor distance that measures similarity or dissimilarity

between the tensors. Several different measures have been proposed in the literature

to compute distance between diffusion tensors. For two tensors T1 and T2, a distance

measure refers to a function that has two tensors as inputs and returns a nonnegative

scalar value:

d : Sym+
3 × Sym+

3 7→ R+
0 (1.23)

Where Sym+
3 is a symmetric positive definite second-order tensor.
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A distance measure d is a metric if, for the two tensors T1 and T2, it satisfies

the following conditions [30]:

T1 = T2 ⇔ d(T1,T2) = 0 (1.24)

d(T1,T2) = d(T2,T1) (1.25)

A measure is a Riemannian metric, if it also fulfills the following condition for in-

finitesimally close T1 and T2:

d(T1,T2) ≤ d(T1,T3) + d(T3,T2) (1.26)

Diffusion tensors can be described by their different properties: size, orienta-

tion, and shape [30]. Distance measures based on scalar indices [31, 32] or angular

differences [33] are invariant to one or more of the tensor properties; therefore, there

are many tensors T1 6= T2 for which d(T1,T2) = 0 that invalidates the metric condi-

tion (1.24). Scalar indices are computed using only rotationally invariant eigenvalues

of the tensors, so they do not depict the directional variation of diffusion anisotropy.

Also, angular measures only consider changes in orientation of the main eigenvalue,

so they do not depict the size variation of diffusion tensors.

Here, we only consider the distance measures that are Riemannian metrics

and fulfill the metric conditions (1.24) to (1.26). Following explains three well-known

distance metrics.
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1.4.5.1 L2 Distance or Frobenius Distance

This measure deals with the diffusion tensors components as vector elements

and computes the L2-norm of the difference between the elements of two vectors.

dL2(T1,T2) =

√√√√ 3∑
i=1

3∑
j=1

(T1ij − T2ij)2 (1.27)

dL2 is the same as the Frobenius distance [34] that is computed as:

dF (T1,T2) =
√
tr((T1 − T2)2) (1.28)

where tr(.) is the matrix trace and is defined as the sum of the diagonal elements.

1.4.5.2 Riemannian Geometric-Based Distance

This class of measures constrains the matrices to positive definite matrices.

Batchelor et al. [35] defined a geometric-based distance metric (dg) between a pair of

tensors and the associated shortest path (geodesic) joining them:

dg(T1,T2) = N(T−
1
2

1 T2T
− 1

2
1 ) (1.29)

where

N(T) =

√√√√ 3∑
i=1

(log(λTi ))2 (1.30)

where λTi are the eigenvalues of tensor T. This distance measure can also be used to

compute tensor means or do interpolation between tensors [36, 37].

Additionally, this distance measure is invariant to any linear changes of coor-

dinates and is also called “Affine-invariant” distance in some references [37, 38].

Affine-invariant Riemannian metrics have excellent theoretical properties, but

also lead in practice to complex and slow algorithms. To remedy this limitation, Ar-
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signy et al. [36] introduced a new family of Riemannian metrics called Log-Euclidian

distance metric (dLE). In their suggested framework, Riemannian computations can

be converted into Euclidean ones once tensors have been transformed into their matrix

logarithms. Therefore, dLE is equivalent to the Frobenius distance of the logarithm

of the matrices:

dLE(T1,T2) =

√
tr({log(T1)− log(T2)}2) (1.31)

where tr(.) is the matrix trace operator.

The Log-Euclidian distance yields same results as Riemannian distance, but

with much simpler and faster computations [36]. Although Log-Euclidean metric

does not yield full affine-invariance as the affine-invariant metric defined in equation

(1.29), it is invariant by similarity (orthogonal transformation and scaling).

1.4.5.3 Kullback-Leibler Distance

A diffusion tensor can be interpreted as the covariance matrix of a Gaussian

distribution that describes the local diffusion [30]. Therefore, a family of dissimilarity

measures between diffusion tensors is the statistical divergence that measures the

overlapping of probability distribution functions. In this regard, the square-root of

the J-divergence (symmetrized Kullback-Leibler) is proposed as a distance metric

(dKL) between two diffusion tensors [39]:

dKL(T1,T2) =
1

2

√
tr(T−1

1 T2 + T−1
2 T1)− 2n (1.32)

where the dimensionality n is 3 for diffusion tensors. Like Riemannian distance, dKL

is invariant to Affine transformations that is a desirable property in registration and
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segmentation applications.

1.4.5.4 Comparison of Tensor Distance Metrics

Peeters et al. [30] have classified several distance and similarity measures that

have been presented in literature. They have analyzed the behavior of above distance

metrics according to their robustness to noise and their sensitivity to changes in size,

orientation and shape of the diffusion tensors. The Shape is given by the ratio between

the different eigenvalues, such that eigenvalues are changed from linear (λ1 > λ2 = λ3)

to planar shape (λ1 = λ2 > λ3), and from planar to spherical shape (λ1 = λ2 = λ3).

They have shown that all above-mentioned metrics are sensitive to changes

in different properties of the diffusion tensor. All dg, dLE and dKL give practically

the same results and are sensitive to noise. The L2 distance (dL2 or dF ) is relatively

simple but shows higher robustness against the noise.

1.5 Partial Volume Effect (PVE)

Quantitative analysis of magnetic resonance (MR) brain images is important

to advance our knowledge about human brain structures. In an MR acquisition, the

different levels of energy emitted from different types of tissue are quantized and

sampled into discrete pixel/voxel segments in an output image. However, due to the

finite spatial resolution of the imaging device, a single image voxel may contain of

several types of tissues. This phenomenon is called partial volume effect (PVE), and

it complicates the segmentation process. Figure (1.7) shows a schematic explanation

of the partial volume effect in the context of MR imaging. Voxels composed of purely
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Figure 1.7: A schematic explanation of the partial volume effect in the context of

brain magnetic resonance imaging (Tohka, 2014).

gray matter (GM) are colored in black while voxels composed of white matter (WM)

are in white color. These are termed pure tissue voxels or pure plugs. Voxels composed

of multiple tissue types, termed mixed voxels or non-pure plugs, are colored in gray.

In the figure, these are voxels containing both WM and GM tissue types. The actual

anatomical boundary between tissue types is shown in blue color, and red color is

used to indicate voxel boundaries [40].

Dealing with PVE is an important factor for accurate classification of brain

structures and volume quantification of MR brain images. A range of 20% to 60% of

volume measurement errors is reported by ignoring the PVE [41, 42]. Several algo-

rithms have tried to solve an extended version of the tissue classification problem to

estimate the amount of each tissue type within each voxel. This extended problem has
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been referred by several names as fuzzy segmentation, partial volume segmentation,

tissue fraction estimation, and partial volume estimation. The extended problem

computes the partial volume coefficients (PVCs) within each voxel, for example, a

voxel contains 20% of WM, 80% of GM, and 0% of CSF. It should be noted that

the partial volume coefficients are different from tissue type probabilities. Usually

the Bayesian tissue classifiers produce more crisp tissue type maps than the partial

volume estimation algorithms [40].

In this study, we suggested to enhance brain segmentation by using only pure

voxels for initialization or training of a selected classification method. One way to find

pure samples is to compute partial volume coefficients (PVCs) within each voxel and

choose only those voxels that demonstrate one tissue type is significantly dominant.

Mixed model is the most commonly used model of partial volume estimation in brain

MRI [43]. This model assumes that the intensity value of each voxel is a realization of

a weighted sum of random variables (RVs), that each RV characterizes a pure tissue

type. The weights are partial volume coefficients (PVCs) in the range of 0 to 1.

Consider the observed image as X = {χi : i = 1, ..., N}, with χi ∈ RK , where

N denotes the number of voxels in the image, i is the voxel index, and K is the number

of modality channels in the multispectral case. A voxel intensity χi is considered as

the realization of random variable χi. Assume there are M tissue types in the image;

similarly, each tissue type j is described by a random variable lj, that is assumed to

be distributed according to a multivariate normal distribution with the mean of µj

and covariance of Σj. Then, random variable χi can be written as the weighted sum
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of tissue types:

χi =
M∑
j=1

wijlj + n (1.33)

Where n represents the measurement noise that is assumed to be Gaussian, and

wij ∈ [0, 1] are partial volume coefficients (PVCs) for all tissues j in voxel i, such that

in each voxel:
∑M

j=1 wij = 1.

The mixed model needs to be simplified. One simplification method is sam-

pling noise model [44, 45], that assumes all randomness in the model is due to mea-

surement noise. This leads to a new model where tissue types are represented by the

mean intensities of tissue types:

χi =
M∑
j=1

wijµj + n (1.34)

If enough data channels are available, a direct solution to above equation is through

penalized least squares [43] my minimizing:

LS(W ) =
N∑
i=1

∥∥∥∥∥χi −
M∑
j=1

wijµj

∥∥∥∥∥
2

(1.35)

with constrains that
∑M

j=1 wij = 1 and 0 6 wij 6 1, and W denotes a matrix

of all PVCs. A variation to above minimization problem is suggested by adding

a regularization term with a Markov Random Fields prior that assumes PVCs of

neighboring voxels should have similar values [43].

An accurate solution to partial volume estimation is possible if enough multi-

channel information are available from different modality sources collected in high

enough resolution. The accuracy of mixed model decreases if multi-modal informa-

tion are coming from different spatial resolutions, where some modality images are
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acquired in lower resolution than others. This makes the estimation of partial volume

coefficients inaccurate especially in tissue boundaries. In chapter 3, Figure (3.5), we

illustrated that incorporating multi-modal information, collected in different spatial

resolutions, increases the number of mixed samples in tissue boundaries.

This work, in chapter 3, emphasizes that careful considerations should be

taken to deal with increased PVE when input modality data are provided in different

spatial resolutions. We introduced a novel method to find pure samples. Our method

operates in physical spatial domain and is not limited by the constrains of voxel lattice

spaces of different input modalities. Once detecting pure samples, we can safely

integrate multi-modal information in training/initialization of selected classifiers for

an enhanced segmentation quality.

PVE are consequences of limited spatial resolution and are increased in low-

resolution images like diffusion-weighted MRI. In chapter 4, we addressed PVE in

low-resolution DWI scans by introducing a novel super-resolution reconstruction ap-

proach using the multi-modal information of structural MR images provided in high

spatial resolution. There are some other multi-modal PVE corrections introduced in

literature. Shidahara et al. [46] introduced a synergistic functional-structural resolu-

tion recovery (SFS-RR) method for PVE correction at PET-MR. They proposed the

use of a probability brain atlas by segmenting T1-MR, and run an ROI wavelet-based

resolution recovery. Grecchi et al. [47] has developed the SFS-RR algorithm to fit

PET-CT for detecting and monitoring bone metastases. Boussion et al. [48] intro-

duced another multi-resolution approach to extract information from high-resolution
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(HR) image (MR or CT) to transfer and integrate them in low-resolution image (PET

or SPECT) using a discrete wavelet transform. In this study, for the first time, we

suggested to use HR structural MR modalities for super-resolution reconstruction

(SRR) of DWI scans by developing a weighted total variation (WTV) method to fit

our super-resolution approach.

1.6 PVE Challenges in Processing of Large-scale Heterogeneous Data

The overall purpose of this research is to address limitations caused by partial

volume effects (PVE) in processing of large-scale heterogeneous data. Dealing with

PVE in an appropriate manner is important to get better interpretation from thou-

sands of heterogeneous data scans acquired over the years for multi-site studies like

the Huntingtons Disease study in the PREDICT-HD project [1].

There are hundreds of structural MR data, diffusion-weighted imaging data

and clinical data from hundreds of controls and subjects with Huntingtin gene ex-

pansion acquired from several collection sites all over the world. It is desirable to use

information from all acquired heterogeneous data, but it is not possible to näıvely

incorporate them together in available standard processing tools without addressing

current limitations. Over the first 7 years of PREDICT-HD study, most of the data

were collected from scanners with 1.5 Tesla scan protocol, where the T2-weighted

scans were acquired in lower spatial resolution than the T1-weighted scans typically

by a factor of 3. This 7 years of low-resolution T2-weighted scans were ignored in

our current processing pipeline as they were adversely affecting the quality of seg-
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mentation results when they were directly processed by our standard segmentation

algorithm. Also, hundreds of diffusion-weighted imaging (DWI) data were acquired

in very low spatial resolution of 8 mm3 that could provide complementary informa-

tion in study of WM abnormalities and could be used to develop new biomarkers for

disease progression [19]. However, application of DWI is limited by its relatively low

spatial resolution.

In this study, we investigated the issues caused by partial volume effects due

to the low-resolution nature of data, and we introduced novel techniques to tackle

current limitations to combine complementary information from all low-resolution

and high-resolution multi-modal scans acquired in a data session to advanced our

interpretation of underlying anatomical structures.
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CHAPTER 2
TISSUE CLASSIFICATION OF LARGE-SCALE MULTI-SITE
HETEROGENEOUS MR DATA USING FUZZY K-NEAREST

NEIGHBOR METHOD

This study describes enhancements to automate classification of brain tissues

for multi-site degenerative magnetic resonance imaging (MRI) data analysis. Pro-

cessing of large collections of MR images is a key research technique to advance our

understanding of human brain. Previous studies have developed a robust multi-modal

tool for automated tissue classification of large-scale data based on expectation maxi-

mization (EM) method initialized by group-wise prior probability distributions. This

study aims to augment the EM-based classification using a non-parametric fuzzy k-

Nearest Neighbor (k-NN) classifier that can model the unique anatomical states of

each subject in the study of degenerative diseases. The developed method is applica-

ble to multi-center heterogeneous data analysis.

2.1 Introduction

Brain tissue segmentation on structural magnetic resonance imaging (MRI)

has received considerable attention; one of classic neuroimaging challenges is the

segmentation of MR images into white matter (WM), grey matter (GM) and cere-

brospinal fluid (CSF). Volumetric measurements in different brain regions are impor-

tant in studies on aging and neurodegenerative disorders [49] like Alzheimer’s disease,

Schizophrenia and Huntington’s Disease (HD).

Given the relevance of brain tissue segmentation, different automated segmen-
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tation methods have been proposed over the years. Almost all of these methods rely

on a supervised or unsupervised voxel classifier. Supervised methods use manually

segmented training data to learn the typical distribution of intensity or appearance

features for the tissue classes [50]. Unsupervised methods, particularly those based

on expectation maximization (EM), do not require training data and are therefore

more widely used than the supervised methods. EM-based methods start with an

initial segmentation, that is often based on a probabilistic brain tissue atlas that is

registered to the unlabeled target scans, and from this initialization, class-specific

Gaussian intensity distributions are estimated. This intensity model can then be

used to update the segmentation and this process is repeated until the segmentation

converges [49].

Kim and Johnson [8] implemented an iterative optimization framework be-

tween bias-correction, registration, and tissue classification using expectation maxi-

mization (EM) method for large-scale heterogeneous multi-site longitudinal MR data

analysis. In this study, we extend the EM -based classification using a non-parametric

fuzzy k-Nearest Neighbor (k-NN) classifier that avoids biases inherent in EM use of

prior probability distributions that may not represent diseased anatomical states.

2.2 Methods

2.2.1 General Framework

This study describes the algorithmic enhancements on the implementation of

a framework developed by Kim and Johnson [8] that iteratively incorporates bias-
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field correction, image registration, and tissue classification. Enhancements applied

for more accurate subject specific tissue classification in processing of heterogeneous

multi-site degenerative MR data.

Our atlas based framework takes inputs of any combination of modalities with

any number of scan repetitions if the input modalities have comparable resolution

and voxel sizes. First, using a Rigid-type registration, all intra-subject scans are

spatially normalized into a common subject-specific reference orientation [51] defined

by anterior commissure (AC), and posterior commissure (PC) landmarks, and mid-

saggital plane [52, 53]. Then, all intra-modal scan repetitions are averaged together

to increase the signal-to-noise ratio for each modality. After that, all the atlas priors

are placed into the subject space using an atlas to subject transformation that is

derived from a high-deformable registration algorithm (SyN) [54, 55] to enhance the

accuracy of subject-specific tissue priors.

The warped priors in the subject space are tissue probability maps giving

the probability of a certain voxel belonging to a certain tissue, and they are used

to initialize the Gaussian distribution parameters for the EM algorithm. Finally,

the processes of posterior estimation, bias field correction, and the registration are

iteratively updated multiple times until convergence (Figure 2.1).

The core implementation of the framework developed by Kim and Johnson [8]

uses a general expectation-maximization (EM) algorithm [56, 57, 58, 59] by iterative

distributional parameter estimation to classify each individual voxel y at location i

into K tissue types. The process assumes Gaussian mixture model yi ∼ N(θi) where
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Reference	  (Atlas)	  image	  list	  

Subject	  image	  list	  

Intra	  Subject	  	  
Registra7on	  

Intra	  Subject	  Registra7on	  
	  +	  	  

Bias	  Correc7on	  

Atlas	  to	  Subject	  
Transforma3on	  

EM	  
Algorithm	  

Posterior	  

Prior	  

Bias	  field	  
Correc7on	  

Figure 2.1: A rough demonstration of iterative classification process by (Kim and

Johnson, 2013) using expectation maximization (EM) method. In our development,

the EM output posterior probability maps and the input multi-modal MR images are

used to train a fuzzy k-NN classifier.
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θi = {µi, σi} with mean µ and variance σ2 of each tissue label Γ ∈ {l|l = 1 · · ·K}.

First step is the expectation (E) step to determine the expected posterior density

function p(yi|θ,Φi) that tells us how likely voxel yi belongs to each tissue label with

estimated bias-field Φi [57]. Formula presented here are mostly taken from the works

[8, 56, 57, 58, 59].

E-Step.

p(yi|θ,Φi) =
∑
l

p(yi|Γi = l, θl,Φi)p(Γi = l), (2.1)

with p(yi|Γi = l, θl,Φi) = Nσ,l(yi − µl − Φi) and

p(Γi = l) =
til∑k
l=1 til

,where til is tissue specific prior (2.2)

Then the maximization (M) step updates the parameters of Gaussian θ and bias-field

Φ by maximum likelihood estimation from current density function.

M-Step.

µl =

∑
i p(Γi = l|yi, θ,Φi)(yi − Φi)∑

i p(Γi = l|yi, θ,Φi)
, σ2

l =

∑
i p(Γi = l|yi, θ,Φi)(yi − µl − Φi)

2∑
i p(Γi = l|yi, θ,Φi)

(2.3)

Above equations are extended to multi-modal data as described in [57].

2.2.2 New Classifier

A non-parametric subject specific fuzzy k−NN classifier complements the EM

estimate of tissues using the information from multi-modal scans. The new classifier

takes the output tissue probability maps (TPMs), Pc(i), from the EM algorithm,
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where “i” represents a voxel location, and “c” is a single tissue class:

∀i ∈ {voxel locations} ,

∀c ∈ {1, . . . ,C} ,

∃ 0 ≤ Pc(i) ≤ 1 s.t.
C∑
c=1

Pc(i) = 1

(2.4)

Where C is the total number of tissue types, and Pc(i) represent how likely voxel

location i belongs to tissue type c.

2.2.2.1 Training Sample Set

To find the candidate training sample locations “t” for the k −NN classifier,

all Pc(i) from EM posterior TPMs are thresholded in order to identify those sample

locations that have a sufficient probability to belong to a single tissue type. Increasing

the threshold leads to fewer but more reliable tissue samples. A threshold of 0.7 is

chosen based on the results presented by Vrooman et al.[60] for brains tissue types.

t ∈ {i ∃c s.t. Pc(i) ≥ 0.7} (2.5)

Where training sample location t is assigned with a label pointing to tissue region c.

Chosen training samples are then represented in an F-dimensional feature

space with:

F = M + C (2.6)

Where F is the number of features; M is the number of input multi-modal scans,

and C is the total number of tissue types. The feature vector corresponding to the

training sample t is created as:

[
I1(t), ..., IM(t), P̆1(t), ..., P̆C(t)

]
(2.7)
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Where Im(t), m ∈ {1, . . . ,M} represents the intensity value of mth input image scan

at sample location t, and P̆c(t), c ∈ {1, . . . ,C} is a binary value derived from the cth

EM posterior TPM at sample location t, such that:

P̆c(t) =

{
1 if Pc(t) ≥ 0.01
0 if Pc(t) < 0.01

(2.8)

In fact, our feature space defines all the candidate regions, suggested by EM results,

that the current sample location t probably belongs to by more than one percent

chance. In this way, the fuzzy K − NN classifier is restricted to only biological

plausible results, and it is not biased by the probability values estimated in EM step.

Finally, each created feature vector is added to a training sample set, and its

known label code is added to the corresponding row of a labels vector.

2.2.2.2 Test Sample Set

Test sample locations “s” are the center points of voxel locations in the first

input scan, and for each test location, a feature vector is created as shown in equation

(2.7). All the test feature vectors are then added to a test sample set.

2.2.2.3 Run the Algorithm

The training and test sample sets and the labels vector are passed to a fuzzy

k − NN algorithm where the following procedure is performed on each test sample

location:

1. In the feature space, the Euclidean distances between each test sample and

all the training samples are computed. Distances are calculated through a k-
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dimensional tree structure [61] that is a data structure for organizing points in

a k-dimensional space using space partitioning.

2. The first K nearest neighbors are identified from the computed distance vector.

K needs to be an odd number, and it was set to 45 as suggested by Vrooman

et al. [60] and Cocosco et al. [62].

3. New probabilities, Pc(s), are computed for the test location s showing how likely

the current test location belongs to each tissue type. If N out of K nearest

neighbors belong to tissue class c, then:

∀s ∈ {test sample locations} ,

∀c ∈ {1, . . . ,C} ,

Pc(s) =

∑N
o=1

1
d2c,o∑K

i=1
1
d2i

(2.9)

Where dc,o is the distance of oth occurrence of class c to the current test loca-

tion s; di is the distance to the ith neighbor of current test sample, and Pc(s)

represents the probability that the current test location s belongs to class c.

4. For the test location s, all computed Pc(s), c ∈ {1, . . . ,C} are stored in one

row of a S×C likelihood matrix, where S is the total number of test locations,

and C is the total number of tissue types:

likelihood matrix =



.

.

.
P1(s), ..., Pc(s), ..., PC(s)

.

.

.


S×C

(2.10)

5. Finally, new tissue probability maps are created by rearranging each column
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of likelihood matrix to an output probability image. There are C output prob-

ability maps corresponding to all interested tissue types.

2.3 Experimental Methods

The accuracy and effectiveness of developed method is evaluated qualitatively

and quantitatively.

2.3.1 Test Data

A set of 18 synthetic MR datasets of a brain subject from BrainWeb database

[63] are used for quantitative evaluation of developed enhancements. The BrainWeb

database provides a rich set of multi-spectral data as input sources to our algorithm

that include both T1 and T2 modality scans. BrainWeb also provides a simulation

of heterogeneous nature of multi-site real data with input variants that represent

six levels of noise and three degrees of bias-field for each T1 and T2. Finally, the

BrainWeb data provides a set of tissue segmentation baselines for comparison against

each output result from our algorithm.

2.3.2 Qualitative Evaluation

3D Slicer [64] was used to visually compare the segmentation results of devel-

oped enhancements to the technique established by Kim and Johnson [8]. Qualitative

investigation was done using a sample T1-weighted MR scan that was arbitrarily se-

lected from our local University of Iowa SIEMENS Trio Tim 3 Tesla scan protocol.

This protocol was used as part of multi-site international PREDICT-HD [1] project.
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Table 2.1: Atlas definition of 15 region-specific intensity-context priors. Each tissue
type is sub-divided into regions of interest with given names. (Gm = Gray matter,
Wm = White matter, Csf = Cerebrospinal fluid, Crbl = Cerebellum, Vb = Venous
blood).

Tissue Gm Wm Csf Wm & Gm Vb Background

Name

Basal Wm Csf Thalamus Vb Not Gm
Hippocampus Crbl Wm Globus Not Wm

Crbl Gm Not Csf
Surf Gm Not Vb

Air

2.3.3 Quantitative Evaluation

Developed enhancements were evaluated quantitatively using BrainWeb database

described in section 2.3.1.

The accuracy and robustness of developed enhancements by a fuzzy k −NN

algorithm were compared to the reported results by Kim and Johnson [8] derived from

an EM -based only classification. For this purpose, the similarity of both methods

were compared against the segmentation baseline provided by BrainWeb along with

the evaluation datasets.

Our atlas based approach uses the atlas definitions from two T1-weighted

and T2-weighted modalities with priors for 15 discrete region-specific tissue types

listed in Table 2.1. This is a slightly modified approach to that taken in [8] where

17 regions were identified with the Basal region being subdivided into (Caudate,

Putamen, Accumben) regions.

The software is implemented based on the Insight Toolkit (ITK) libraries

[65, 66] and conforms to the coding style, testing, and software guidelines identi-
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fied by the National Alliance for Medical Image Computing (NAMIC) group. Our

implementation is publicly available via BRAINSTools package [67] and contributes

to a fully automated processing pipeline for MR images [68, 69].

2.4 Results

Figure 2.2 shows the visual comparison of results on a sample MR scan from

the PREDICT-HD study. As shown by corresponding arrows in both images, the

segmentation boundaries of GM, WM and CSF from our developed method (using

k-NN) (Fig. 2.2(b)) are more agreeable to real anatomical tissue boundaries than the

results derived from EM -based only classification (Fig. 2.2(a)).

In order to compare the quantitative results, two independent measures, “Dice

index” and “average Hausdorff distance [70]”, are reported to compare the results of

automated delineations against the ground truth. Figure 2.3 shows the Dice index

(larger is better) and average Hausdorff distance (smaller is better) evaluated along

three degrees of bias-field (rf = 0%, rf = 20% and rf = 40%) and six levels of

noise (0%, 1%, 3%, 5%, 7%, and 9%) for three tissue types (WM, GM and CSF). The

results of EM method are shown in black while the blue color is used for the results

of developed enhancements using a k-NN classification [71].

2.5 Discussion and Conclusions

This research project improved automated classification of brain tissues for

multi-center 3D MRI data analysis. Previous studies have used expectation maxi-

mization (EM) based classification that is group specific and uses a priori knowledge
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(a) (b) 

Figure 2.2: Visual comparison of segmentation results on a sample PREDICT-HD MR

data between (a) EM only based classification and (b) developed enhancements using

a fuzzy k − NN classifier. More accurate delineation is achieved by the developed

method.
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Bias	Field	
0
20	

40	

EM	based	

KNN	based	

Figure 2.3: Comparison of classification of cerebrospinal fluid (CSF), Grey matter

(GM) and White matter (WM) tissues between EM only based classification (black)

and the extended method by a fuzzy k−NN classifier (blue) using two independent

measures, Dice index (larger is better) and average Hausdorff distance (smaller is

better) . The evaluation is performed along three degrees of bias-field (rf=0, rf=20

and rf=40) and six levels of noise (0%, 1%, 3%, 5%, 7%, and 9%) along x-axis.

Both similarity measures show improvement on the results of developed k − NN

enhancements.
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for all the subjects in an atlas based approach. This study, however, emphasized the

importance of a non-parametric model’s utility in neurodegenerative diseases, since

each subject has unique anatomical states in longitudinal degenerative studies that

may not be represented by prior probability distributions. Enhancements were sug-

gested by augmenting the EM -based classification using a fuzzy k-nearest neighbor

(k-NN) classifier that builds up a model for each individual subject and complements

the classification results that EM produces. A Fuzzy k −NN method was selected,

as this non-parametric classifier is subject specific; it is not biased by prior probability

distributions, and it potentially can model more complex decision boundaries than a

Gaussian distribution based mixture method.

The developed method generates more precise results than EM only classifi-

cation since both similarity measures, Dice index and the average Hausdorff distance,

show improvement on the results of k−NN classifier as demonstrated in Figure 2.3.

Also, qualitative observations in Figure 2.2 show that our method especially provides

more accuracy in delineation of sophisticated tissue boundaries where tissue regions

are highly interleaved together like GM and WM boundaries.

Also, to investigate more about the feature vector of the k−NN model (equa-

tion 2.7), we compared the results of k −NN classification against the ground truth

for each of following approaches:

- Feature vectors were created using the intensity values of the input images and

the values of EM tissue probability maps.

- Feature vectors were created using the intensity values of the input images and
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thresholded values of EM tissue probability maps (as described in equation 2.8).

Figure (2.4) compares the above approaches using two independent metrics,

Dice index (larger is better) and average Hausdorff distance (smaller is better), eval-

uated along three degrees of bias-field (rf = 0%, rf = 20% and rf = 40%) and six

levels of noise (0%, 1%, 3%, 5%, 7%, and 9%) for three tissue types (WM, GM and

CSF). The results of described training method using thresholded EM tissue prob-

ability maps (equation 2.8) are shown in blue while the red color shows the results

when k−NN was trained based on direct values of EM tissue probability maps. The

training approach using thresholded values (as in equation 2.8) generates more precise

results because the training of k−NN method is not biased by the probability values

estimated in EM step, but the k−NN model still benefits from the EM results as it

is restricted to only candidate regions suggested by the EM outputs.
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Bias	Field	
0
20	
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Train	KNN	by	EM	-ssue	probability	maps		

Train	KNN	by	thresholded	EM	-ssue	probability	maps		

Figure 2.4: Two independent measures, Dice index (larger is better) and average

Hausdorff distance (smaller is better), are used to compare the classification of cere-

brospinal fluid (CSF), Grey matter (GM) and White matter (WM) tissues in two

cases: (1) k −NN classifier was trained by thresholded EM tissue probability maps

(equation 2.8) (results in blue); (2) k − NN classifier was trained directly by EM

tissue probability maps (results in red). The evaluation is performed along three de-

grees of bias-field (rf=0, rf=20 and rf=40) and six levels of noise (0%, 1%, 3%, 5%,

7%, and 9%) along x-axis. Both similarity measures show improvement on using the

thresholded EM tissue probability maps in the training phase of k −NN .
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CHAPTER 3
ENHANCE MR MULTI-MODAL TISSUE CLASSIFICATION BY

ADDRESSING PARTIAL VOLUME EFFECT

Previous chapter suggested enhancements when multi-modal MR modalities

(T1/T2-weighted) were acquired at the same high spatial resolution with isotropic 1

mm3 voxel sizes. However, many real world data are collected such that T2 image

is acquired at lower spatial resolution than T1 (usually by a factor of 2 to 3). This

is especially the case in datasets provided from scanners with 1.5 Tesla scan proto-

col. This chapter aims to enhance multi-modal classification when complementary

information comes from multiple modality scans with different spatial resolutions.

At the first step, it is important to upgrade the previous multi-modal clas-

sification framework, introduced in chapter 2, to run in physical space before we

investigate the segmentation results in the case that input modality scans are not at

the same resolution and their voxel lattices do not line up.

In this chapter, first we enhance our previous multi-modal classification frame-

work to run in physical space, and we demonstrate that the system is upgraded suc-

cessfully by generating equivalent results in voxel space and physical space in the

case of single-modal input. Then, we show that näıvely adding the information of a

second modality with lower spatial resolution can adversely affect the segmentation

results. We investigate and explain the reason by describing partial volume effects

(PVE), and we develop a novel approach to deal with PVE issue. Finally, we present

the evaluation results of developed method.
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3.1 Enhancement of Classification Framework to Run in Physical Space

Different modalities may have different spatial resolutions in a multi-modal

classification framework. Therefore, it is important to perform classification in phys-

ical space to avoid interpolation errors that may introduce artificial partial volume

effects. In this step, the previous classification framework, introduced in chapter 2,

is reimplemented to perform tissue classification in physical space.

3.1.1 Evaluation

Only one modality (T1-weighted) is used to evaluate the performance of reim-

plemented framework. By using only one modality, we expect to get essentially the

same results when the classification is run in physical space versus voxel space.

3.1.1.1 Test Data

BrainWeb dataset, as described in section 2.3.1, is used for quantitative eval-

uation of the classification performance.

3.1.1.2 Results

“Dice Index” measure is reported in Figure (3.1) to compare the results of

automated delineations against the ground truth when the algorithm is run in physical

space vs. voxel space.

3.1.2 Conclusion

Single-modal results show that there is no significant difference in the perfor-

mance of the classification framework when the algorithm was run in physical space
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rather than voxel space. That is our desirable, since it means the results are not

deteriorated when the framework was upgraded. Now we are ready to do further

investigations on multi-modal classification using the new proper infrastructure.

3.2 Significance of Multi-modal Classification

Using complementary information from different modality sources helps better

delineation of different brain tissue types, since each modality scan reveals different

characteristics of underlying biological structure. T1-weighted MR is the most used

modality for brain segmentation; however, as an example, Figure (3.2 a) shows that

it is hard to distinguish CSF from the bone marrow, or the gray matter (GM) from

the venous blood (VB) by looking only at T1 image. As illustrated by Figure (3.2

b), a T2-weighted scan provides better contrast to resolve the ambiguities between

above-mentioned biological tissue types.

Intracranial volume (ICV) is used as a statistical correction of overall body size

in many neuroimaging structural analysis [72, 73]. Accurate segmentation of marginal

brain regions like CSF and Venous Blood results in more accurate estimation of total

ICV.

Figure (3.3) qualitatively shows that an accurate segmentation of CSF can be

achieved by using complementary information from different modalities. We used a

sample MR dataset that was arbitrarily selected from our local University of Iowa

SIEMENS Trio Tim 3 Tesla scan protocol. This protocol was used as part of multi-site

international PREDICT-HD project.
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T1 T2 

CSF	 Bone	Marrow	 CSF	 Bone	Marrow	

GM	 GM	VB	 VB	

(a)	 (b)	

Figure 3.2: (a) It is hard to distinguish between gray matter (GM) and venous blood

(VB) (as both are shown as grey) and to distinguish CSF from the bone marrow (since

both are shown as dark) by looking only at T1-weighted MR scan. (b) T2-weighted

MR provides better contrast in the case of T1 ambiguities between mentioned tissue

types, since here GM is gray but VB is dark; also CSF is shown as white while bone

marrow is dark.
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T2 T1 

T1 

Single-modal	(T1-only)	Segmenta3on	

Mul3-modal	(T1/T2)	Segmenta3on	

(a)	

(b)	

Figure 3.3: Visual comparison of segmentation results on a sample PREDICT-HD

MR dataset (a) Single-modal segmentation of CSF using only T1-weighted modality.

Segmentation results are shown in blue boundaries while the true anatomical bound-

ary is defined in yellow based on the contrast provided by T2-weighted modality.

(b) Multi-modal segmentation of CSF using both T1/T2-wegihted scans shows en-

hanced delineation of CSF as the segmentation results conform with true anatomical

boundaries.
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We also used the BrainWeb dataset, as described in section 2.3.1, to inves-

tigate the benefits of multi-modal segmentation quantitatively. It is demonstrated

in Figure (3.4). Red color shows the results when a single-modal segmentation us-

ing only T1 MR modality is run, while Green color shows the results when two T1

and T2 MR modalities are used for the segmentation process while both modalities

have the same isotropic 1 mm3 resolution. Green lines show adding second modality

has enhanced the segmentation results for CSF. Also, adding a second modality can

enhance segmentation in higher levels of noise for WM and GM.

However, this does not hold when the additional multi-modal information

comes from a lower spatial resolution. It is demonstrated again in Figure (3.4) by blue

color when a multi-modal experiment is run using two T1 and T2 MR modalities with

different spatial resolutions, where T1 is provided with isotropic 1 mm3 resolution,

but T2 has 1× 1× 3 mm3 voxel sizes.

Figure (3.4) demonstrates that adding information from a second modality

with significantly lower resolution decreases the quality of segmentation results. It

is expected because misalignment between voxel sizes and voxel locations increases

the partial volume effect (PVE) at tissue boundaries, that means more spatial sam-

ples contain a mixture of different tissue types. Using these voxels to initialize EM

parameters and to train k − NN algorithm can adversely affect the performance of

classifier and results in less accurate and less robust tissue classification.
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3.3 Multi-modal Partial Volume Effect

Due to the finite spatial resolution of imaging device, a single image voxel

may contain of several tissue types. This phenomenon, termed as partial volume

effect (PVE), complicates the segmentation process, and, due to the complexity of

human brain anatomy, dealing with the PVE issue is an important factor for accurate

brain structure classification.

Figure (3.5) shows a schematic explanation of partial volume effect in a simpli-

fied 1D demonstration, where 1D MRI signals from three different image modalities

(T1, T2 and DWI) are demonstrated near actual anatomical boundaries of the Gray

matter and the White matter in brain.

The MRI works by detecting the magnetic particles in atoms within cells

and sending electromagnetic pulses at different rates and strength through the body.

Then, different types of matter give off different levels of energy when they are placed

in a magnetic field. These energy signals, collected by the electromagnetic receivers,

are quantized and sampled into discrete voxel segments in an output image scan. The

different signal levels between different tissue types cause a different contrast for each

matter in the output image. In an MRI scanning session, several different scans are

run. Depending on how they measure the relaxation of magnetic particles, a variety

of modality images with different contrasts are acquired. For example, in a T1 scan,

gray matter gives off a low signal and looks darker than the white matter that gives

off a higher signal and looks pale gray, but this is inverse in T2 and DWI scans.

Although tissue regions usually form coherent shapes with clear anatomical
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borders, the representation of tissue boundaries in discretized image scan is not per-

fectly in agreement with real anatomy because of error in image discretization. In

fact, biology cannot conform in the resolution levels that scanners produce.

Therefore, due to the hardware limitations and the presence of noise, the

measurement of MRI signals is not perfect, and the collected signals are quantized in

several intermediate levels in the boundary regions. This causes an inherent partial

volume effect at tissue boundaries even in a single modality acquisition. The quantized

signals are then mapped in discretized segments of spatial domain. A value is assigned

to each voxel of image based on the average of all samples taken within the spatial

range of that voxel. If the image has a low spatial resolution with large voxel sizes,

it is most likely that many voxels are placed in two different anatomical regions, so

their value reflects a partial volume composition of more than one tissue type.

Partial volume composition affects even a larger number of spatial samples

when the multi-modal information comes from the modality scans having different

resolutions and origins. This is shown in Figure (3.5) using a 1D demonstration. The

MRI signals are sampled in 1 mm intervals. When only two T1 and T2 modalities

with comparable resolutions are used, there are more pure spatial samples since only

two samples are affected by partial volume composition (specified in a red box).

However, adding new modality information from a low-resolution scan introduces the

partial volume effect to a larger number of spatial samples. The affected samples are

specified in a green box and represented by a question mark as they reflect more than

one tissue type.



www.manaraa.com

64

A careful consideration should be made to only use those spatial samples

that are not affected by partial volume composition, termed as pure samples, for

initializing/training of the classification modules.

3.4 Methods

Classification accuracy can be improved by excluding the voxels affected by

the partial volume composition, termed as mixed samples or nonpure samples, from

the initialization of EM algorithm and the training of k−NN classifier. Figure (3.6)

demonstrates the scatter maps of pure samples versus the mixed samples in a coronal

view of two Gray matter and White matter tissue regions.

In this section, we develop a new approach to identify the pure samples by

computing a binary mask, called pure plugs mask, that excludes all the mixed samples

from the initialization/training of classification methods.

3.4.1 Computing Pure Plugs Mask

To compute a pure plugs mask, we should avoid the PVE inherent at tissue

boundaries as well as the PVE caused by information inconsistency through multiple

modality channels.

3.4.1.1 Avoid Inherent PVE

All the voxels located at tissue boundaries may include a mixture of both

tissue regions since the biology cannot conform in the resolution levels that scan-

ners produce. This causes an inherent partial volume effects that can be avoided by
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Figure 3.5: 1D demonstration of partial volume effect (PVE) when MRI signals of

different modalities are sampled to discredited segments with different spatial reso-

lutions and origins. Question mark represent the sample values that reflect a partial

volume composition of more than one tissue type.
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(a) (b) (c)

Figure 3.6: (a) a coronal view of a scatter point map of two Gray matter (black)

and White matter (pink) tissues. (b) only pure samples are shown. (c) only mixed

samples are shown.

excluding all tissue boundaries from the pure plugs mask. For this purpose, anatom-

ical edges are detected from the input modality with the finest resolution (usually a

T1-weighted scan) using a Canny edge detector [74] as shown by Figure (3.7).

3.4.1.2 Avoid Multi-modal PVE

As demonstrated by Figure (3.5), partial volume composition affects a larger

number of spatial samples when the multi-modal information comes from multiple

modality scans with different voxel resolutions. To deal with this issue, only pure

samples should be included in the classification process. To find the pure samples,

pure plugs should be computed.
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Figure 3.7: Anatomical tissue boundaries are detected using a Canny edge detector.

Detected edges should be excluded from the pure plugs mask to avoid inherent PVE

in tissue boundaries.

3.4.1.2.1 What Is a Pure Plug?

A pure plug is defined as a region (plug), where all multi-modal images have

consistent information within the entire range of that region. The size of each plug

region is then decided based on the lowest spatial resolution at each direction within

all the input modality scans.

This definition raises an immediate question: how do we define the consistency

of multi-modal information within a plug region? This is discussed in following section

by defining the pure plugs integrity metric.

However, before analyzing the information from multi-modal channels, all the

input images should be normalized to have the same dynamic range for their intensity

values.
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3.4.1.2.2 Standardize Intensity

An intensity transformation function, as shown in Figure (3.8), is applied to

the intensity levels of each input image. All the input modality scans are scaled

to have the same dynamic range based on the first and last 5 percentiles of their

histogram. Also, low and high tails of data in the output image are trimmed to the

constant bounds of 0 and 1. This transform function can be formulated as:

O(i) =



αI(i) + b0 if −b0
α
< I(i) < 1−b0

α

1 if I(i) > 1−b0
α

0 if I(i) < −b0
α

where α =
0.9

QI(95)−QI(5)
, b0 = 0.95−QI(95).α

(3.1)

Where at index i, O(i) is the output image intensity, and I(i) is the input

image intensity. Also, QI(p) is the pth quantile (percentile) of the input intensity

range.

3.4.1.2.3 Pure Plugs Integrity Metric

To decide whether a plug is considered pure, several uniformly distributed

spatial sample points should be taken within the entire range of the plug area. Then,

each sample point is represented in an N -dimensional intensity space based on the

normalized intensity values from N input modality channels.

Figure (3.9) shows a joint image histogram for two input modality, T1 and

T2-weighted, images. The picture shows the distribution of points in different colors
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Figure 3.8: Intensity transform function applied to each input modality image to

make all the input images have the same intensity dynamic range.

for background and four tissue regions (White Matter (WM), Gray Matter (GM),

Cerebrospinal Fluid (CSF), and Venous Blood (VB)). It is important to notice that

the points are scattered non-uniformly in different directions for a single tissue region.

The reason is that the input modality scans have different variances for the intensity

values within a tissue region.

This means that the spatial sample points taken within a plug region may not

be uniformly distributed in the intensity space even if all belong to a single tissue

region. Hence, a metric should be defined to decide about the integrity of sample

points based on following criteria:

- Detects the possible outliers in intensity distribution of the sample points.
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Figure 3.9: Joint image histogram for two modality images. Volume 1 is a T1-weighted

image, and volume 2 is a T2-weighted scan from the same subject. The distribution

of points is shown in different colors for background (grey) and four tissue regions:

White Matter (red), Gray Matter (blue), Cerebrospinal Fluid (green), and Venous

Blood (yellow). A box is plotted around the mean of each region with the size of 4

standard deviation at each direction.
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- Considers how far the sample points are scattered from each other.

The shape and size of multivariate sample points can be quantified by a co-

variance matrix. Mahalanobis distance is a well-known distance measure that takes

into account the covariance matrix, so it is used as the basis for multivariate out-

lier detection [75]. For an N -dimensional sample X̄k = (x1, x2, ..., xN)T in a set of

observations, the Mahalanobis distance is defined as:

DM(X̄k) =
√

(X̄k − µ̄)TS−1(X̄k − µ̄) (3.2)

Where S is the covariance matrix, and µ̄ = (µ1, µ2, ..., µN)T is the mean of all ob-

servations. In fact, the Mahalanobis distance is a Euclidean distance that considers

the covariance of data by down-weighting the axis with higher covariance. Then, a

sample X̄n is considered as outlier, if DM(X̄n) > α.Mean(DM), where α can tune

the threshold value.

Although the Mahalanobis distance is useful to detect the outliers, it is not

a good integrity metric for finding the pure plugs, as it is scale invariant. That

means that Mahalanobis distance does not consider how far the sample points are

scattered. Figure (3.10) shows this using an example. To consider the scatter of

points, a Euclidean distance can be used to show how dense all the sample points are

scattered within the range of intensity space (0 < i < 1).

Therefore, a combination of both Mahalanobis and Euclidean distance mea-

sures can be used to define the integrity metric, such that:

- Mahalanobis distance considers the covariance of multivariate sample points
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Figure 3.10: Mahalanobis distance is scale invariant and does not consider the range

of scattered points. (a) The Mahalanobis distance for all points is 1.22, and all points

belong to a single tissue region. (b) The Mahalanobis distance for all points is 1.22,

but points belong to four different tissue regions.
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distribution to detect the outliers.

- Euclidean distance considers the density of sample points distribution within

an intensity range.

The introduced integrity metric then combines both characteristics by using

the normalized Mahalanobis distance to weight the Euclidean distance for each sam-

ple point taken within the plug region. The integrity metric, called Mahalanobis-

weighted Euclidean distance, is then defined as:

D(i) =
MD(i)

Max(MD)
× ED(i) (3.3)

Where, for the ith sample point, D(i) is the introduced integrity distance metric,

MD(i) is the Mahalanobis distance, ED(i) is the Euclidean distance to the mean, and

Max(MD) is the maximum Mahalanobis distance between all observations.

The computed integrity metric distance for all the sample points in Figure

(3.10 a) is 0.07, that is significantly smaller compared to the computed distance

metric of 0.42 for the sample points in Figure (3.10 b). Thus, choosing a threshold

value of 0.1 can indicate that the samples in Figure (3.10 a) belong to a pure plug

region, while the sample in Figure (3.10 b) do not belong to a pure plug.

Based on the introduced distance metric in equation (3.3), following steps

should be taken at each plug region to decide whether it is pure:

1) Several spatial sample points are taken within each plug area, such that the

points are uniformly scattered over the entire region.

2) All samples are transformed to an N -dimensional space based on their intensity
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values from N input modality channels.

3) The integrity distance measure, as defined in equation (3.3), is computed for

each sample point considering the covariance and density of distribution.

4) The plug is then considered to be pure, if all the integrity metric values are

less than a threshold value that is defined as a value in the normalized intensity

range (between 0 and 1).

The threshold value can be tuned based on the dataset. Here, we empirically

chose a value of 0.2. Figure (3.11) shows a test pure plugs mask created based on

3 modalities from a test dataset listed in Table (3.1). This dataset was used as

part of multi-site international PREDICT-HD project. The third modality is an

isotropic diffusion-weighted information (IDWI) image, that is the geometric mean

of all diffusion images in an input DWI dataset. This image has voxel sizes 8 times

larger than typical structural MR modalities.

Table 3.1: Test dataset to create a test pure plugs mask.

Scan Site
MR
vendor

Field
strength

Collected
modalities

0140 52100
Site 024
(University of Iowa)

SIEMENS
TrioTim

3.0
T1: 1× 1× 1 mm3

T2: 1× 1× 1 mm3

IDWI: 2× 2× 2 mm3
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Figure 3.11: A test pure plugs mask created from 3 modality scans from a subject

test listed in table (3.1).

3.5 Experimental Methods and Results

In this section, we evaluate the segmentation enhancement when only pure

samples, detected by computing a pure plugs mask, are used in initialization/training

of classification methods.

3.5.1 2D Phantom Analysis

Figure (3.12) illustrates two 2D phantom images, representing two modalities,

and their corresponding baseline label map to run a sensitivity analysis that evaluates

the accuracy of segmentation over the downsampling factor of second modality.

Both images have the size of 128×128 with spacing of 1×1 mm2. Figure (3.12

a) represents the first modality with two tissue types (A and B) in addition to the

background, where tissue type A is, in fact, a composition of two anatomical tissues

that are not distinguishable by the first modality phantom as they are represented by

the same intensity value. The values in parentheses show the assigned intensity value
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to each tissue region. Figure (3.12 b) represents the second modality with three tissue

types in addition to the background. The second modality phantom shows enough

contrast to distinguish between tissue types A and C.

For the sensitivity analysis, we downsampled the second modality by different

downsampling factors (1 to 10), and at each step the pure plugs mask was generated

from the first modality (in high resolution) and the downsampled second modality

(in low resolution). As an example, Figure (3.13 a) shows the second modality down-

sampled by a factor of 10. The corresponding pure plugs mask is shown overlaid on

the image in Figure (3.13 b).

At each downsampling step, the segmentation error rate was computed using

each of following experiments:

- A high-resolution estimation of second modality was reconstructed from the

downsampled low-resolution image using a nearest neighbor interpolation, and

a class label was assigned to each pixel based on its intensity value.

- A fuzzy K-Nearest Neighbor classifier was used to generate the segmentation

label map when a random set of samples were used to train the k−NN classifier.

- A fuzzy K-Nearest Neighbor classifier was used to generate the segmentation

label map when only pure samples (within the pure plugs mask) were used to

train the k −NN classifier.

Figure (3.14) compares the results from above three experiments. The seg-

mentation error rate was calculated as the percentage of misclassified pixels to the

total number of pixels when the segmentation results were compared to the baseline
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(a) 1st Modality (b) 2nd Modality
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3

2

(c) Segmentation label map

Size: 128 x 128
Spacing: 1 x 1 mm2

Figure 3.12: Two 2D phantom images representing two modalities and their corre-

sponding baseline label map.
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(a) (b)

Figure 3.13: (a) The second modality downsampled by a factor of 10. (b) The

corresponding pure plugs mask (in blue) overlaid on the downsampled image.

label map illustrated in Figure (3.12 c).

The results show that classification approaches perform better than simple up-

sampling by nearest-neighbor interpolation. Although both classification approaches

show increased error rate with higher downsampling factor, the developed novel ap-

proach, using pure plugs mask, reduces the segmentation error rate from about 10%

to less than 8% when only pure samples were use for the training of the classifier.

The developed algorithm cannot help much in addressing the partial volume effects

in boundaries between tissues A and C because the boundary information only comes

from the low-resolution second modality data. However, the developed method helps

to reduce misclassification in boundaries between tissues A and B, and between tis-

sues C and B, as well as the boundaries between the background and each tissue
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region. Choosing only pure samples for training increases the distinguishability be-

tween different tissue classes in the feature space as unillustrated by Figure (3.15).

This leads to more accurate classification of mixture boundary pixels that are affected

by partial volume composition.

3.5.2 Qualitative Evaluation

3D Slicer [64] was used to visually compare the previous segmentation re-

sults to the results of developed approach when only pure samples are used to ini-

tialize/train the classification methods. Qualitative investigation was done using a

sample dataset that was selected from a GE Signa 1.5 Tesla scan protocol, where T1

resolution is 1×1×1 mm3, but T2 voxel size is 1.015×1.015×3 mm3. This protocol

was used as part of multi-site international PREDICT-HD [1] project.

Figure (3.16) shows the qualitative results. It shows that incorporating pure

samples in the classification process can help detecting subtle tissue regions that were

missed when the second modality has a lower spatial resolution. Also, new approach

enhances the segmentation accuracy in complex tissue boundaries.

3.5.3 Quantitative Evaluation

Developed enhancements were evaluated quantitatively using BrainWeb database

as described in section 2.3.1.

Figure (3.17) reports the results of four experiments. Green color shows the

results when two modalities are used (T1 and T2), and both images have the same

isotropic 1 mm3 voxel lattice. Blue color shows the results when two modalities with
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Figure 3.14: The segmentation error rate is computed as the percentage of misclas-

sified pixels to the total number of pixels when the baseline label map is compared

with the results of multi-modal segmentation from three different experiments: (1)

The low-resolution modality was upsampled using a nearest neighbor interpolation.

(2) A fuzzy K-Nearest Neighbor classification was run when a random set of samples

were used to train the classifier. (3) A fuzzy K-Nearest Neighbor classification was

run when only pure samples were used to train the classifier.
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(a)	 (b)	

Figure 3.15: Training samples and their corresponding class labels in the feature

space. (a) Only pure samples are using for training. (b) Both pure and non-pure

samples are used for training.

different resolutions are used. T1 is 1 × 1 × 1 mm3, but T2 has the voxel size of

1 × 1 × 3 mm3. In both cases, solid lines show the segmentation results when pure

plugs mask is NOT used, while dashed lines show the segmentation results when pure

plugs are computed and incorporated in the segmentation process.

We also investigated the regional benefits of using pure samples in segmen-

tation by showing the results of the gray matter (GM) and white matter (WM) in

each of four different lobes of brain (frontal, occipital, temporal and parietal (Figure

3.18)). Figure (3.19) shows the results for GM and Figure (3.20) presents the results

for WM.
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(a) (b)

Figure 3.16: (a) Segmentation results when pure plugs mask is not incorporated in

classification process. (b) Results when only pure samples are used to initialize/train

the classification methods. Incorporating pure samples in the classification process

enhances segmentation in tissue boundaries and can help better delineation of subtle

tissue regions.
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Figure 3.18: Human brain diagram showing four different lobes of brain (Image:

Public domain).

3.6 Discussion and Conclusions

Both qualitative and quantitative results proved that incorporating pure plugs

in the classification methods always enhances the segmentation quality for gray mat-

ter (GM) and white matter (WM), such that the accuracy of multi-modal classifi-

cation with low-resolution T2 and using pure plugs mask approaches the quality of

segmentation when all multi-modal scans are provided in high-resolution.

Also, the regional results for gray matter and white matter in each lobe of

brain conforms with the results computed within the whole cerebrum. In occipital

lobe, although incorporating pure plugs enhances the segmentation results, the qual-

ity of low-resolution multi-modal segmentation is still lower than the segmentation

quality when both modalities are provided in high spatial resolution because occipital
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Bias	Field	 Modali,es	
T1	+	T2	(1x1x1	mm3)	
T1	+	T2	(1x1x3	mm3)	

Use	pure	plugs	
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True	

Gray	Ma6er	(GM)	

Figure 3.19: Regional benefits of using pure samples in segmentation of gray matter

(GM) in in each of four different lobes of brain (frontal, occipital, temporal and

parietal). Green lines show the results when the multi-modal segmentation is run

using two modalities with the same isotropic 1 mm3 resolution. Blue lines show the

results when T2 modality has a lower spatial resolution as 1×1×3 mm3. Dashed lines

show the improved results when only pure samples are involved in the classification

process.



www.manaraa.com

86
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Figure 3.20: Regional benefits of using pure samples in segmentation of white matter

(WM) in in each of four different lobes of brain (frontal, occipital, temporal and

parietal). Green lines show the results when the multi-modal segmentation is run

using two modalities with the same isotropic 1 mm3 resolution. Blue lines show the

results when T2 modality has a lower spatial resolution as 1×1×3 mm3. Dashed lines

show the improved results when only pure samples are involved in the classification

process.
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lobe is a relatively smaller region where many voxels are affected by partial volume

composition.

For the CSF, incorporating pure plugs does not show significant improvement

to the quality of segmentation results. This happens because the introduced method

in this chapter is expected to show significant improvements in complicated tissue

boundaries with high partial volume effects like the regions where WM and GM are

highly interleaved together. However, CSF is mostly included in large pool areas of

ventricles that are less affected by partial volume composition.

This chapter showed that by dealing with partial volume effects (PVE), mul-

tispectral information can be combined from both high-resolution and low-resolution

modalities to enhance the segmentation quality of a subject dataset, while näıvely

adding the low-resolution data would adversely affect the segmentation results.

The new developments introduced in this chapter directly improved segmenta-

tion quality for the longitudinal, multi-site, international PREDICT-HD study [1], as

now it is possible to use the low-resolution T2-weighted modalities that were acquired

during the first 7 years of this study to enhance the segmentation results previously

generated using only T1-weighted scans.

The developed method may also help to reduce the cost and the scanning

time in future clinical trials as by dealing with PVE algorithmically, we can collect

only the first modality in a high resolution and use the other modalities acquired in

lower spatial resolutions. Decreasing the scanning time may have other benefits like

reducing the subject burden for being in the scanner.
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CHAPTER 4
SUPER-RESOLUTION RECONSTRUCTION OF LOW-RESOLUTION

DIFFUSION-WEIGHTED IMAGING DATA USING A PRIORI
KNOWLEDGE OF ANATOMICAL STRUCTURES

4.1 Introduction

Diffusion-weighted imaging (DWI) is a key imaging modality that enables non-

invasive and in-vivo investigation and characterization of brain white matter (WM)

architecture and microstructure and is widely applied in neurological applications.

DWI is, however, strongly limited by its relatively low spatial resolution. The

resolution of DWI data that is compatible with the time constraints of clinical research

is 2 × 2 × 2 mm3. A DWI voxel volume is approximately 8 times larger than that

of a typical structural MRI. Increasing the resolution of DWI acquisitions can allow

investigation of novel fiber structures and will enable a more accurate assessment of

brain connectivity by tracing small white matter fiber bundles. Also, high resolution

images are critical to reduce partial volume effects. However, increasing the resolution

is challenging in DWI. A DWI scan needs to be repeated 64 times for averaging to

increase the resolution from 2×2×2 mm3 to 1×1×1 mm3 while keeping the similar

signal-to-noise ratio [76]. It means that a 5-minute acquisition would become a 5 hour

scan, that is not feasible.

To enhance the resolution, image post-processing methods are an alternative

to hardware improvement. However, simply using the interpolation methods to in-

crease the resolution causes results show blurry edges. The term of super-resolution
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reconstruction (SRR) refers to considering image degradation process to estimate the

latent high-resolution image from the input low-resolution scan.

To overcome the limitations of low-resolution DWI, some SRR methods have

been recently developed. One group of methods require multiple low-resolution (LR)

images to reconstruct a high-resolution (HR) image. Scherrer et al. [77] suggested

to acquire multiple anisotropic orthogonal DWI scans and fuse them into a high

resolution output. Ning et al. [78] combined the concept of compressed sensing and

classical super-resolution to reconstruct high-resolution DWI from multiple sub-pixel-

shifted thick-slice LR acquisitions with non-overlapping diffusion directions to reduce

acquisition time. However, these types of methods are hampered for general appli-

cations because: first, a specially designed image acquisition method is needed to

acquire multiple scans; second, the subject motion and eddy current effects in differ-

ent scans could largely affect the final results. The other group of methods obtain

HR data using a single LR image through a learning process or an intelligent reg-

ularization. Alexander et al. [79] proposed a method to exploit information from

expensive high quality datasets and transfer them to enhance the images acquired

from a more modest data acquisition. Their method attempts to learn mapping from

LR to HR through training sets using patch-based image representation and random

forest regression. Tarquino et al. [80] suggested a patch-based sparse representation

approach to recover HR reconstruction using the coupled low and high resolution

dictionaries. Although these methods do not require multiple LR acquisitions, they

still need a separate high-resolution DWI training dataset. Shi et al. [81] proposed a
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method for super-resolution reconstruction of a single LR scan by modeling degrada-

tion process and use of different regularization terms with no need of a high-resolution

training dataset. However, the performance of their method still largely relies on the

information contained in the original low-resolution image. As an example of edge-

directed interpolation for resolution enhancement, Li et al. [82] have developed a

multi-resolution covariance-based adoption method around edge pixels in the image.

They estimated the HR covariance from the LR counterpart based on their geometric

duality. The application of this method to DWI super-resolution has not been inves-

tigated. Also, the performance of their method relies on the information contained

in the original LR image and the model employed to describe the relationship be-

tween HR pixels and LR pixels. As an example of using anatomical priors, Yendiki et

al. [83] have developed an algorithm to reconstruct a white matter pathway jointly

from a series of longitudinally acquired DW images. In their study, they generated a

within-subject template from the T1 images of the subject at all time points. Then,

they followed a global probabilistic tractography approach to present an unknown

WM pathway in the space of the within-subject template and propagate to the na-

tive space of DWI at all time points to compute its posterior probability given the

images. The application of their method is in longitudinal studies to reconstruct an

unknown WM pathway.

Here, we develop a novel method for super-resolution reconstruction of a low-

resolution input DWI image using the prior anatomical information extracted from

other modality sources that are provided in higher spatial resolution. Particularly, we
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incorporate some anatomical descriptions provided by high-resolution structural MR

(e.g. T1/T2-wighted) scans into the super-resolution reconstruction of DWI image.

Our method aims to increase the resolution of input low-resolution DWI to a higher

spatial resolution, e.g., at a factor of 2. Our contribution is twofold: 1) Create a

combined edge map from the structural MR scans in higher spatial resolution (1×1×1

mm3); 2) Use the created edge map as discrete spatial weights to run super-resolution

reconstruction in an edge-guided weighted total variation (WTV) method.

4.2 Mathematical Background

4.2.1 Regularized Recovery of Inverse Problems

Image reconstruction is the process of recovery of an ideal intensity image from

its corrupted or indirect measurements. Such a process is considered as an inverse

problem in science as it starts with the results (observations) and then calculates the

causes. The observed data are usually related to the ideal unknown image through a

“forward” transformation [84].

We consider the recovery of a continuously differentiable image f : Ω → R

from its measurements b. Here, Ω ⊂ {Rn | n = 2 or 3} is the spatial support of

the image. The acquisition scheme is modeled by a linear operator A, i.e.,

b = A(f) + n (4.1)

Where n is assumed to be a Gaussian distributed white noise with standard deviation

of σ.

The recovery is ill posed in many practical applications as the operator A is
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ill conditioned. One popular approach is to add a regularization penalty term to the

inverse problem. Regularization is a method for adding constrains, from some a priori

information or assumption about the structure of f , in addition to those implicit in

coherence to the data:

min
f
J (f) subject to ‖A(f)− b‖2 ≤ σ2 (4.2)

By formulating the minimization problem using Lagrange multipliers:

f̂ = argmin
f
‖A(f)− b‖2 + λJ (f) (4.3)

Where the first term ensures fidelity to the data, and the second term imposes a

roughness regularization penalty J that is a convex functional of f . The optimal

parameter λ is a positive parameter that balances theses two terms and is chosen

such that
∥∥∥A(f̂)− b

∥∥∥2

≈ σ2.

One popular choice for the regularization term includes quadratic penalties

[85] that is the squared l2 norm of either the image f or its (discrete) derivatives:

J (f) = ‖Of‖2 =

∫
Ω

|Of |2dΩ (4.4)

Above penalty term is well-known as Tikhonov regularization [86, 87]. By

using a quadratic regularization term, the estimator f̂ becomes a linear combination

of quadratic terms that provides computational advantages. However, quadratic es-

timators suffer from oversmoothing of recovered image, as they do not recover some

important attributes of f , such as the location and magnitude of jumps, or higher

order discontinuities [84]. To show this, consider following 1−D computation on step

edges.
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4.2.1.1 1-D Computation on Step Edges

Set Ω = [−1, 1], and f the step edge function:

f(x) =

{
0 x ≤ 0
a x > 0

(4.5)

Where a is a real number. Then, the regularization penalty can be written as:

J (f) =

∫ 1

−1

|f ′(x)|2 dx (4.6)

Although f is not differentiable at 0, we try to compute the above penalty by

approximating f ′(x) around 0:

f ′(x) ≈ f(h)− f(−h)

2h
≈ a

2h

s.t. x ∈ [h,−h] and h > 0, small

(4.7)

Then:∫ 1

−1

|f ′(x)|2 dx =

∫ −h
−1

|f ′(x)|2 dx+

∫ h

−h
|f ′(x)|2 dx+

∫ 1

h

|f ′(x)|2 dx

≈ 0 + 2h× (
a

2h
)2 + 0 ≈ a2

2h
→∞, h→ 0

(4.8)

Therefore, a step-edge is severely penalized as it has infinite energy and cannot

minimize the Tikhonov regularization. Now replace the square in the regularization

term by a p > 0: ∫ 1

−1

|f ′(x)|p dx

≈ 0 + 2h× | a
2h
|p + 0 ≈ |a|p(2h)1−p <∞, when p ≤ 1, h→ 0

(4.9)

Equation (4.9) shows that the regularization term is finite when p ≤ 1, so

edges are less penalized. Note that when p = 1, this is the “Total Variation” [88] of
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f where the penalty is the l1 norm of gradient magnitude of signal, i.e.,

JTV (f) =

∫
Ω

|Of |dΩ (4.10)

The concept of using total variation in image processing was first introduced

by Rudin et al. [88] for noise removal, since it is very effective at simultaneously

preserving edges while smoothing noise in flat regions [89, 90]. In addition, total

variation (TV) minimization is widely used for reconstruction of images with sparse

gradients that specially makes sense as many natural images have sparse or nearly

sparse gradients [91, 92].

Generally, constrained l1 minimization methods are well-known for reconstruc-

tion of sparse signals from highly incomplete sets of linear measurements [93]. This

is thoroughly investigated in the next section.

4.2.2 l1-norm Minimization in Sparse Signal Recovery

To investigate l1-norm minimization problem, let’s take a step out and look at

this method in the field of signal recovery. One of challenging problems in engineer-

ing is to reconstruct a signal when there are fewer equations than unknowns. Such a

problem of course does not have a unique solution without some additional informa-

tion. However, under sparsity assumption we can find a unique solution which has

fewest non-zero entries.

We can recover a signal x0 ∈ Rn by solving the following optimization problem

under the sparsity assumption, when the unknown signal that we wish to recover
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depends upon a smaller number of unknown parameters:

min
x∈Rn
‖Φx− y‖2 + λ ‖x‖l0 (4.11)

Where Φ is an m × n matrix with fewer rows than columns (m < n), and ‖x‖l0 =

|{i : xi 6= 0}|; i.e., number of nonzero samples in x.

l0 norm is the sparsity count regularization. However, the equation in (4.11)

is nonconvex, and a common alternative is to consider the following convex problem:

min
x∈Rn
‖Φx− y‖2 + λ ‖x‖l1 (4.12)

Where ‖x‖l1 =
∑n

i=1 |xi
|. In equation (4.12), l1 norm is used as a poxy for the l0

sparsity count.

4.2.3 Enhance Sparsity Recovery in l1-norm Minimization

Like l0 norm, the l1 norm regularization term has an advantage over quadratic

penalty functions as it preserves jumps in the function. However, a key difference

between the l1 and the l0 norms is the dependence on magnitude, such that larger

coefficients are penalized more heavily than the smaller coefficients in the l1 norm.

To address this imbalance, Candes et al. have suggested a weighted formulation of l1

minimization to more democratically penalize nonzero coefficients [93]:

min
x∈Rn
‖Φx− y‖2 + λ ‖Wx‖l1 (4.13)

Where ‖Wx‖l1 =
∑n

i=1 wi |xi
|, and each wi is a positive weight.

In general, weighted and unweighted l1 minimization have different solutions,

since weights can be considered as free parameters in the convex problem, whose
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values “can” improve the signal reconstruction if they are set wisely.

What values for the weights will improve signal reconstruction?

As a rough rule of thumb, weights should be chosen such that they counteract

the influence of signal magnitude on the l1 penalty function. Suppose we know the

true signal x0; then, the weights can be inversely proportional to the true signal

magnitude such that:

wi =

{ 1
|x0,i| , x0,i 6= 0,

∞, x0,i = 0.
(4.14)

Ideally, zero-valued components of x0 are prohibited in the recovered signal

being penalized by large (infinite) entries of wi, while the largest signal coefficients

are encouraged to be identified as nonzero in the recovered signal being penalized less

by small (finite) wi entries. It is of course impossible to construct the precise weights

without knowing the true signal x0, so a valid set of weights can be designed based on

an approximation x̂0 to x0. Also, To provide stability, the equation (4.14) is rewritten

as following by introducing the parameter ε > 0:

wi =
1

|x̂0,i|+ ε
, ε > 0 (4.15)

Where ε should be set slightly smaller than the expected nonzero magnitudes of x̂0

[93]. In addition to stability, using ε ensures that a zero-valued entry in approximated

x̂0 does not strictly prohibit a nonzero estimate in the recovered signal.

Using above weights in minimization problem (4.13) makes the solution x to

concentrate on the large nonzero entries in x0 since they will be penalized less by

small wi entries, while zero-valued entries on x0 will be largely penalized and are



www.manaraa.com

97

Figure 4.1: The log-sum concave penalty function flog,ε(t) is a better approximation

for the l0 sparsity count f0(t) rather than the traditional convex l1 regularization f1(t)

(Candes et al., 2008).

discouraged in the recovered signal.

4.2.4 Analytical Justification

Using a concave penalty function, instead of l1-norm regularization term in

equation (4.12), more closely resembles the l0-norm regularization. It is illustrated in

figure (4.1), where the flog,ε(t) is defined as:

flog,ε(t) = log(1 +
|t|
ε

) (4.16)

Like the l0 norm, the flog,ε(t) allows a relatively large penalty to be placed on

small nonzero coefficients. In fact, flog,ε(t) tends to f0(t) as ε→ 0.

In this section, we show that using a weighted l1 minimization of as weights

defined in (4.15) is like to find the local minimum of a concave penalty function as



www.manaraa.com

98

defined in (4.16).

To establish this connection, consider the following problem:

min
x∈Rn
‖Φx− y‖2 + λ

n∑
i=1

log(1 +
|xi|
ε

) (4.17)

Which is equivalent to

min
x∈Rn

n∑
i=1

log(1 +
|xi|
ε

) subject to y = Φx (4.18)

Above optimization problem can be solved using a majorize-minimize (MM)

[94] framework by iteratively minimizing a simple surrogate function majorizing a

given objective function, so (4.18) is equivalent to:

min
x,u∈Rn

n∑
i=1

log(1 +
ui
ε

) subject to
y = Φx,

|xi| ≤ ui, i = 1, .., n.
(4.19)

If x̂ is a solution to (4.18), then (x̂, |x̂|) is a solution to (4.19). Also, conversely,

if (x̂, û) is a solution to (4.19), then x̂ is a solution to (4.18). Now, set:

g (u) =
n∑
i=1

log(1 +
ui
ε

) (4.20)

Function g is concave and below its tangent, so it can be minimized by iter-

atively improving on an initial guess u(0). At each iteration, we minimize a linear

approximation of g around the previous guess u(l) derived from the first-order Taylor

polynomial:

u(l+1) = argmin
{
g
(
u(l)
)

+5g
(
u(l)
)
.
(
u− u(l)

)}
subject to u ∈ C (4.21)

Where C is a convex set. Each iteration of above problem is a convex op-

timization problem, since it is minimization of a linearization of g around previous
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guess:

u(l+1) = argmin5g
(
u(l)
)
.u subject to u ∈ C (4.22)

In the case of optimization problem in (4.19), this gives:

(
x(l+1), u(l+1)

)
= argmin

n∑
i=1

ui

u
(l)
i + ε

subject to
y = Φx,

|xi| ≤ ui, i = 1, .., n.
(4.23)

Which is equivalent to:

x(l+1) = argmin
n∑
i=1

|xi|∣∣∣x(l)
i

∣∣∣+ ε
subject to y = Φx (4.24)

By setting:

W
(l+1)
i =

1∣∣∣x(l)
i

∣∣∣+ ε
(4.25)

Then (4.24) can be rewritten as:

x(l+1) = argmin
n∑
i=1

W
(l+1)
i |xi| subject to y = Φx (4.26)

That is equivalent to:

x(l+1) = argmin ‖Φx− y‖2 + λ
∥∥W (l+1)x

∥∥
l1

(4.27)

Above is an iterative reweighted l1 minimization approach suggested by Candes

et al. [93], in which each iteration of algorithm solves a convex optimization problem,

whereas the overall algorithm finds a local minimum of a concave penalty function.

If we suppose weights are pre-specified by a “true knowledge” of signal x0;

then, only one iteration of above algorithm would be enough:

x̂0 = argmin ‖Φx− y‖2 + λ ‖Wx‖l1 ,

where W =
1

|x0|+ ε

(4.28)
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4.2.5 Variation of Weights

Non-convex regularization terms give reconstruction with less blurring than

convex metrics [95]. As shown in section 4.2.4, using pre-specified weights in a

weighted l1 minimization is like to find the local minimum of a concave penalty

function that is a better approximation of l0 norm (see Figure (4.1)).

Depending on selected concave function, there are a variety of possible weight-

ing functions in place of W as defined in (4.28). For example, if instead of a log-sum

penalty function, as defined in (4.20), we consider an arctangent concave function:

g (u) =
n∑
i=1

atan(
ui
ε

) (4.29)

We can find an alternative formulation of spatial weights by following the same

procedure described in section 4.2.4:

W =
1

x2
0 + ε2

(4.30)

The choice of different variations of weighting function can be the subject of

further empirical studies. The results of this study are provided based on the choice

of weighting function as defined in (4.28).

4.3 Methods

4.3.1 Weighted Total Variation Minimization for Image Reconstruction

To achieve equation (4.28), we supposed that we have a true knowledge of

signal x0. Surprisingly it can be a valid assumption in medical imaging since we

may have different representations of current subject image through different modal-
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ity sources, where the other modality scans may provide a better estimate of some

anatomical features that we wish to recover in the current subject image.

The weighted l1-norm minimization concept, introduced in section 4.2.3, can

also enhance the performance of total-variation (TV) minimization in image recon-

struction, since TV can be considered as an l1-norm minimization problem. Weighted-

TV problem can then be presented as:

f̂ = argmin
f
‖A(f)− b‖2 + λ ‖W |5f |‖l1 ,

where W =
1∣∣∣5f̂0

∣∣∣+ ε

(4.31)

Where A is a Fourier undersampling operator modeling the physical process

that causes degradation; b is the obeservation samples presented as a vector of noisy

low-pass Fourier measurements, and |5f | denotes the magnitude of discrete gradients

of f .

Also,
∣∣∣5f̂0

∣∣∣ is an estimation of gradient magnitude of f computed as a prior

edge map from the high-resolution representation of input image subject in other

modality scans. The spatial weights (W ) are then constructed from this estimated

edge map.

Weights are inversely proportional to the estimation of gradient magnitude of

input image, such that the strongest edges get the lowest weight values close to zero,

and weak edges get higher weights. The maximum weight value is assigned to the

smooth regions with no edges.

Some methods have been developed for accurate estimation of spatial weights.

Candes et al. [93] suggested an iterative framework to estimate the weights iteratively
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from the gradient magnitude of input low-resolution image. First, all weights are set

to one; then, at each iteration weights are updated based on the gradient magnitude

of estimated high-resolution image in previous iteration. Ongie and Jacob (2015)

[96] suggested to expand the theory of sampling signals of finite rate of innovation

(FRI) on the input low-resolution image to estimate a resolution-independent mask

whose zeros represent the edges of image; then, the spatial weights are created by

discretizing the estimated mask at desired resolution.

Here, we create the spatial weights based on a high-resolution edge map es-

timated from equivalent representation of underlying anatomical structures in other

modality sources. Following section describes the suggested multi-modal framework

to estimate a combined edge map from different modality scans provided in higher

spatial resolution. Then, spatial weights are constructed to be inversely proportional

to the values of estimated edge map.

Several optimization methods have been developed [97, 98, 99] to solve the

minimization problem in equation (4.31) efficiently.

4.3.2 Construction of Weights from Estimated Anatomical Edge Map

Here we describe a multi-modal framework to construct the spatial weights

from an estimation of the anatomical boundaries through a combined edge map.

The edge map is derived from other modality scans that are better representation of

the underlying anatomical structure in higher spatial resolution. Then, the spatial

weights are created to be inversely proportional to the edge values.
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Assume Ii, i ∈ {1, ..., N} are high-resolution modality scans all representing a

single subject image. The gradient of each image is defined as:

∀x = (x1, ..., xn) ∈ {voxel locations} ,

gi(x) = OIi(x) =


∂Ii
∂x1

(x1, ..., xn)

.

.

.
∂Ii
∂xn

(x1, ..., xn)


(4.32)

Where gi(x) is the gradient of ith input scan at voxel location x. Consequently,

the gradient magnitude of each image is defined as:

|gi(x)| = ‖OIi(x)‖2 =

√
(
∂Ii
∂x1

(x1, ..., xn))2 + ...+ (
∂Ii
∂xn

(x1, ..., xn))2 (4.33)

Then, the edge map of underlying anatomical structure is inferred from gra-

dient magnitudes of all input multi-modal scans:

∀x ∈ {voxel locations} ,

µ(x) = max
x
{Ti [gi(x)]}

(4.34)

Where Ti is an image intensity transformation function defined as:

Ti(I) =



αiI + bi if QI(50) < I < QI(95)

M if I > QI(95)

ε if I < QI(50)

where αi =
M − ε

QI(95)−QI(50)
, bi = M − αi.QI(95)

(4.35)

Where QI(p) is the pth quantile of input intensity range. M is maximum

mapped value. Here we set M to 255 that is the maximum allowed value for unsigned
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Figure 4.2: Intensity transform function. Strong edges (with values above %95 per-

centile) are mapped to a maximum value M . Weak edges (with values below %50

percentile) are mapped to a value ε > 0 close to zero. Other edges are mapped linearly

to a ε < value < M .

short. Finally, ε > 0 is the minimum mapped value. Here, ε is set to 1, that is the

minimum non-zero value for the unsigned short range.

Figure (4.2) shows the intensity transformation function defined above. In

fact, the designed transform function maps the strongest edges to have the same

maximum value and removes all weak edges below the median intensity value. Then,

at each voxel location, the edge value is selected from the modality scan that provides

the maximum contrast in that location (equation (4.34)).
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Table 4.1: Test dataset for initial assessments.

Scan Site
MR
vendor

Field
strength

Collected
modalities

1166 54860
Site 001
(Rochester)

GE Signa HDxt 3.0
T1: 1× 1× 1 mm3

T2: 1× 1× 1 mm3

DWI: 1× 1× 2.4 mm3

Once the edge map µ is estimated, the spatial weights are defined as:

W (x) =
1

µ(x)
(4.36)

4.4 Preliminary Assessments on 2D Data

This section presents a series of experiments on a two-dimensional (2D) image

data for the initial assessments of developed super-resolution reconstruction approach.

The results compared the performance of our SRR method to standard TV and zero-

padded IFFT approaches.

4.4.1 Test Data

Initial assessments were run on two-dimensional data. For this purpose, a

sample 3D dataset, listed in Table (4.1), was selected to create the input 2D test

images. This dataset was used as part of multi-site international PREDICT-HD

project and was acquired with a high isotropic (1 × 1 mm2) resolution in the axial

plane.

The input baseline and 2D test images were then created as follows. Note that

all inputs are aligned in both physical and voxel spaces.
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Baseline 2D DWI image: First, the b0 component and the 1st gradient

component were extracted from the sample 4D diffusion-weighted dataset listed

in table (4.1). Then, the mid-axial slice of these components were extracted to

serve as our high-resolution ground truth images with the size of 256× 256 and

isotropic pixel sizes of 1× 1 mm2.

Low resolution input DWIs: were created by downsampling the high-resolution

baseline images by a factor of 2 by only keeping the low pass Fourier indices

from the high-resolution image.

Structural MRI input images: were created by extracting the mid-axial

slice from the corresponding T1/T2-weighted images of same data session.

4.4.2 Evaluation Metric

As a general approach similar to other super-resolution studies [76, 81, 96],

signal-to-noise ratio (SNR) was used to compare the output of developed SRR method

to the results from standard TV and zero-padded IFFT approaches, such that the

higher SNR value indicates the better reconstruction performance. For each recon-

structed image from the different methods, the SNR was computed as:

SNR = 20× log10

‖I0‖2

‖ISR − I0‖2

(4.37)

Where ISR is the reconstructed super-resolved DWI image, and I0 is the base-

line high-resolution DWI image.
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(a) (b)

(c) (d)

Figure 4.3: Created spatial weights based on the anatomical edges estimated from

the high-resolution structural MR modalities. (a) T1-weighted MR image. (b) T2-

weighted MR image. (c) Estimated edge map based on the maximum gradient values

as described in section 4.3.2. (d) Prior spatial weights created from estimated edge

map based on equation (4.36).

4.4.3 Preliminary 2D Results

Figure (4.3) shows the T1/T2-weighted images, the estimated anatomical edge

map, and the created spatial weights based on the method described in section 4.3.2.

The prior spatial weights map was passed to a weighted-TV algorithm along

with the input low-resolution 2D test images to create the results of developed method.

Developed approach was tested on both b0 and 1st gradient components from a
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4D DWI dataset. Figure (4.4) shows the performance of our weighted-TV super-

resolution reconstruction method compared to standard TV and zero-padded IFFT

on a low-resolution b0 image. Figure (4.5) shows the same results for the 1st gradient

component image. We also provided the reconstruction results using FRI edge map

suggest by Jacob and Ongie [96] demonstrated in Figure (4.6). The FRI method

performance is also superior to zero-padded IFFT and standard TV algorithms, and

its reconstructed output image is comparable to the results of our developed method.

4.4.4 Conclusion

The developed weighted-TV method based on the prior knowledge of anatomi-

cal edges shows superior performance compared to both standard TV and zero-padded

IFFT for both b0 and first gradient component.

Also, zero-padded IFFT approach gets better results rather than standard TV

for the b0 component. The reason is that TV works well for compressed sensing

style sampling (when we have sparse samples equally from low and high frequencies)

but seems to perform poorly for super-resolution (when mostly higher frequencies

are missed). This is specially the case here, since our input real data is a relatively

smooth image with no super sharp edges and less high frequency content.

The FRI algorithm has an advantage over our developed method, since it

estimates the anatomical edges from the input low-resolution image, and unlike our

method, it does not need complementary information from external sources. However,

the developed approach has following advantages:
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baseline image zero−padded IFFT
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low−resolution input image IFFT error x 20 TV error x 20 WTV error x 20

Figure 4.6: Reconstructed b0 component of a typical DWI subject using FRI edge

map suggest in (Ongie and Jacob, 2015).

- Using conventional image processing filters makes our method to be easily

adoptable for the processing of large-scale multi-site datasets, since there are

less parameters needed to be adjusted to work optimally for the analysis of a

set of heterogeneous data.

- Developed method uses fast conventional image processing tools. It accelerates

the process time that can be especially important when the implementation is

expanded to operate on real 3D datasets.

- The introduce FRI algorithm operates in voxel space; however, the developed

method can be easily expanded to operate in physical space, that is important

in real world medical imaging applications.
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4.5 Experimental Methods and Results

The developed novel edge-guided weighted total variation (WTV) super-resolution

reconstruction (SRR) method operates on 3D images that have accurate physical

space representations. This 3-dimensional method is incorporated into a framework

that allows processing of all 3D sub-volumes of a 4D DWI dataset in a fully automated

processing pipeline.

The developed novel SRR method is evaluated using three different quantita-

tive evaluation approaches and is compared with two other methods in the literature:

zero-padded IFFT, and standard total variation (TV).

4.5.1 Test Data

We identified 20 DWI sessions from WU-Minn Human Connectome Project

(HCP) database [100, 101] that can provide ground truth high-resolution (HR) base-

lines.

The HCP designed 3T Siemens Connectome scanner equipped with 100mTm−1

and 300 mTm−1 gradient coils, that are several times more powerful than standard

clinical scanners, and exploited several imaging and image reconstruction innovations

to speed up acquisition and improve the data quality [101].

The HCP diffusion-weighted imaging data were acquired with a resolution

of 1.25 × 1.25 × 1.25 mm3 with 18 b0 components and 90 gradient directions at

b = 2000 s/mm2. The original HCP data were used as high-resolution baselines.

We generated low-resolution datasets from these HR baselines to be used as inputs
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for comparing different super-resolution recovery techniques. To simulate a group of

typical-resolution DWI as input sources, the original HCP data were downsampled

in Fourier domain by a factor of 2 to obtain DWI with resolution of 2.5 × 2.5 × 2.5

mm3 that is at the similar level of our typical DWI resolution.

The quantitative evaluation approaches are listed as follows:

4.5.2 Approach 1: Evaluation Based on the Overlap Between Tractography

Results

We evaluated the performance of the developed SRR method in providing

an accurate assessment of brain connectivity by extracting the cortico-spinal tract

(CST) and arcuate fascicle (AF) in both HR baseline and reconstructed images and

computing the fiber bundle overlap between the extracted tracts from the HR baseline

and each reconstructed image.

Arcuate fascicle (AF) is located ventral to the superior longitudinal fascicle

II (SLF II) [102] and dorsal to the extreme capsule and the superior circular sulcus

of the insula. It connects the inferior frontal gyrus with the middle temporal gyrus,

the posterior part of the superior temporal gyrus and cortices of the lateral temporo-

occipital transition region [103, 104]. The cortico-spinal tract (CST) consists of fibers

that originate in the paracentral lobule (principally the precentral gyrus), course

through the brainstem, pons and medullary pyramid, descending into the spinal cord.

CST constitutes the most prominent descending fiber system of the central nervous

system [105, 102]. Figure (4.7) shows the tractgraphy results for AF from right view
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AF	 CST	

Figure 4.7: (Left): Arcuate Fascicle (AF) from right view. (Right): Cortico-spinal

tract (CST) from anterior view.

and for CST from anterior view.

First, a whole brain multi-tensor tractography [106, 107] was computed on the

HR gold-standard scan and each reconstructed image. Then, the cortico-spinal tract

(CST) and arcuate fascicle (AF) were extracted using the White Matter Query Lan-

guage (WMQL) [102], that is a technique to formally describe white matter tracts and

to automatically extract them using Freesurfer cortical parcellations [108, 109]. This

query language allows constructing an anatomical definition for each white matter

tract including description of adjacent gray and white matter regions and rules for

the spatial relations. Therefore, tracts of interest can be extracted from anatomical

knowledge of human brain white matter. Finally, the Bhattacharyya coefficient [110]

was used to quantify the fiber bundle overlap. This metric ranges from 0 to 1, with

0 being no overlap, and 1 being complete overlap of fibers.
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Bhattacharyya coefficient (BC) is computed based on the probability distribu-

tions of each of the spatial coordinates (x, y, z) of a fiber bundle [111]. Denote BCx

as the Bhattacharyya metric on the x-coordinate:

BCx =

∫ √
pb(x)psr(x)dx (4.38)

Where pb(x) is the probability distribution function (pdf) on the x coordinate of the

HR baseline image, and psr(x) is computed from the fiber bundle of SR reconstructed

image. Then, we compute the overlap between two fiber bundles by taking the average

of all three coordinates:

BC =
1

3
(BCx +BCy +BCz) (4.39)

The values of BC are bounded between 0 and 1 that indicates no overlap for 0 and a

perfect match for 1. Bhattacharyya coefficient has the advantage of being sensitive to

minor deviation in tracts since the probability distributions are smooth [111]. Figure

4.8 shows a sample computation of Bhattacharyya coefficient based on the probability

distribution function (pdf) of HR baseline image and SR reconstructed image on each

of x, y and z coordinates.

Figure 4.9 shows the Bhattacharryya coefficients computed to quantify the

overlap between the tractography results extracted from the HR baseline and each of

reconstructed images by the developed WTV, standard TV, and zero-padded IFFT

methods. Results are presented for CST and AF tract bundles in each of 20 test

subject. Numeric results are summarized in Table 4.2, where we report the average

Bhattacharryya coefficients over all test subjects for each tract of interest. The results
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Figure 4.8: A sample computation of Bhattacharyya coefficient based on the proba-

bility distribution function (pdf) on each of x, y and z coordinates. In this example

BC is calculated as 0.98.

demonstrate that the developed WTV approach shows significant improvement on the

tractography results over the other two approaches (standard TV and zero-padded

IFFT) for both arcuate fascicle (AF) and cortico-spinal tract (CST). In order to

compare the quantitative results, a paired t-test was performed and p − value <

0.05 was considered significant. A Welch’s t-test or unequal variance t-test was used

as it is more reliable than the Student’s t-test when the two samples have unequal

variances [112]. A two-tailed test was performed to test the null hypothesis that the

two population means are equal.



www.manaraa.com

117

●

AF CST

WTV TV IFFT WTV TV IFFT

0.85

0.90

0.95

1.00

Method

B
ha

tta
ch

ar
yy

a 
co

ef
fic

ie
nt

method

IFFT

TV

WTV

Figure 4.9: The Bhattacharryya coefficients computed for 20 test datasets to quantify

the overlap for cortico-spinal tract (CST) and arcuate fascicle (AF) extracted from

the HR baseline and each of reconstructed images by three different methods: The

developed WTV, Standard TV, and zero-padded IFFT.
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Table 4.2: The average Bhattacharyya Coefficient to quantify overlap between tracts
of interest extracted from the high-resolution baseline image and each of reconstructed
images.

Tract Method Average Bhattacharyya p-value
Coefficient vs. WTV

CST WTV 0.970
TV 0.946 ∗
IFFT 0.947 ∗

AF WTV 0.960
TV 0.945 ∗
IFFT 0.939 ∗∗

NOTE: CST: cortico-spinal tracts. AF: arcuate fasciculus tracts. ∗: p-value < 0.05.
∗∗: p-value < 0.01. (p-value < 0.05 is considered significant).

4.5.3 Approach 2: Evaluation Based on the Difference Between Rotationally

Invariant Scalar Measurements

We evaluated the performance of the developed SRR method in recovering the

high-resolution rotationally invariant scalar (RIS) measurements by computing the

average difference of RIS values between the HR baseline and the reconstructed images

within four white matter regions of interest. The white matter regions of interest are

selected in 4 different lobes of brain (frontal, parietal, temporal and occipital) where

partial volume encountered, and the mean of error is computed in pure and non-pure

regions as well. Pure and non-pure samples are computed from a pure plugs mask

that is generated from the low-resolution average b0 image and the structural T1 and

T2-weighted MR scans as described in chapter 3.

Figures 4.10, 4.11, 4.12, and 4.13 present the box plots of average RIS errors

within each region of interest for each of super-resolution reconstruction (SRR) meth-
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Table 4.3: Error Mean Value of DTI scalars within each region of interest across all
subjects.

RIS Region WTV TV IFFT p-value p-value
Mean Mean Mean WTV WTV
Error Error Error vs. vs.

TV IFFT
FA Frontal 2.83×10−2 2.96×10−2 2.96×10−2 ∗ ∗ ∗∗ ∗ ∗ ∗∗

Occipital 3.95×10−2 3.97×10−2 3.96×10−2

Parietal 3.13×10−2 3.27×10−2 3.26×10−2 ∗∗ ∗∗
Temporal 3.19×10−2 3.37×10−2 3.36×10−2 ∗ ∗ ∗ ∗∗

MD Frontal 2.61×10−5 3.06×10−5 3.07×10−5 ∗ ∗ ∗∗ ∗ ∗ ∗∗
Occipital 2.75×10−5 3.24×10−5 3.25×10−5 ∗ ∗ ∗ ∗ ∗ ∗
Parietal 2.82×10−5 3.40×10−5 3.41×10−5 ∗ ∗ ∗∗ ∗ ∗ ∗∗
Temporal 2.60×10−5 2.69×10−5 2.69×10−5

RD Frontal 2.63×10−5 3.01×10−5 3.02×10−5 ∗ ∗ ∗∗ ∗ ∗ ∗∗
Occipital 2.90×10−5 3.28×10−5 3.28×10−5 ∗ ∗ ∗ ∗ ∗ ∗
Parietal 2..74×10−5 3.23×10−5 3.23×10−5 ∗ ∗ ∗∗ ∗ ∗ ∗∗
Temporal 2.62×10−5 2.76×10−5 2.76×10−5 ∗∗ ∗∗

AD Frontal 4.11×10−5 4.52×10−5 4.53×10−5 ∗ ∗ ∗∗ ∗ ∗ ∗∗
Occipital 5.34×10−5 5.72×10−5 5.71×10−5 ∗ ∗
Parietal 4.95×10−5 5.47×10−5 5.48×10−5 ∗ ∗ ∗ ∗ ∗ ∗
Temporal 4.52×10−5 4.55×10−5 4.55×10−5

NOTE: ∗: p-value < 0.05, ∗∗: p-value < 0.01, ∗ ∗ ∗: p-value < 0.001, ∗ ∗ ∗∗: p-value
< 0.0001.

ods. Mean errors are computed for each of rotationally invariant scalars consisting

of fractional anisotropy, mean diffusivity, radial diffusivity, and axial diffusivity (FA,

MD, RD, and AD) that are defined in section 1.4.3. Error metric in each region

of interest is defined as the average difference between the RIS values over all voxels

within that region computed from the HR baseline and each of reconstructed images

from different SRR methods. All numeric results are summarized in table 4.3, where

error metrics are averaged over all test subjects.
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Figure 4.10: Comparing the average fractional anisotropy (FA) values within 4 WM

regions of interest between the HR baseline and each of reconstructed images by 3

different methods: Developed edge-guided weighted-TV approach (WTV), standard

TV, and zero-padded IFFT (IFFT). The WM regions of interests are selected in 4

different lobes of brain (frontal, parietal, temporal and occipital) where partial volume

encountered, and the mean of error is computed in pure and non-pure regions as well.
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Figure 4.11: Comparing the average mean diffusivity (MD) values within 4 WM

regions of interest between the HR baseline and each of reconstructed images by 3

different methods: Developed edge-guided weighted-TV approach (WTV), standard

TV, and zero-padded IFFT (IFFT). The WM regions of interests are selected in 4

different lobes of brain (frontal, parietal, temporal and occipital) where partial volume

encountered, and the mean of error is computed in pure and non-pure regions as well.
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Figure 4.12: Comparing the average radial diffusivity (RD) values within four WM

regions of interest between the HR baseline and each of reconstructed images by 3

different methods: Developed edge-guided weighted-TV approach (WTV), standard

TV, and zero-padded IFFT (IFFT). The WM regions of interests are selected in 4

different lobes of brain (frontal, parietal, temporal and occipital) where partial volume

encountered, and the mean of error is computed in pure and non-pure regions as well.
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Figure 4.13: Comparing the average of axial diffusivity (AD) values within 4 WM

regions of interest between the HR baseline and each of reconstructed images by 3

different methods: Developed edge-guided weighted-TV approach (WTV), standard

TV, and zero-padded IFFT (IFFT). The WM regions of interests are selected in 4

different lobes of brain (frontal, parietal, temporal and occipital) where partial volume

encountered, and the mean of error is computed in pure and non-pure regions as well.
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Standard TV and zero-padded IFFT show a similar performance. The reason

is that TV works well for compressed sensing style sampling (when we have sparse

samples equally from low and high frequencies) but seems to perform poorly for

super-resolution (when mostly higher frequencies are missed).

To overcome TV limitations in super-resolution reconstruction, the developed

edge-guided weighted-TV method (WTV) uses the complementary high frequency

edge information from the structural MR modalities that are provided in higher spa-

tial resolution than the diffusion-weighted images. A weight map is generated from

the edge information and is incorporated into the optimization problem defined in

equation (4.31). As shown by presented quantitative results, the developed WTV

method demonstrates a significant improvement over the other two approaches (stan-

dard TV and zero-padded IFFT) in most regions of interest. In order to compare the

quantitative results, paired t-test was performed and p−value < 0.05 was considered

significant.

Since the edge information is included in non-pure regions, we did not expect

to see a significant enhancement within the pure areas. However, the optimization

method [99], used to solve the minimization problem in equation (4.31), is performed

on the whole image; therefore, the incorporated weight map caused improvement

within the whole spatial domain including pure and non-pure regions.

To investigate if the enhanced performance in each WM region of interest

is still mainly due to the enhancement in their non-pure regions, we performed a

correlation analysis by running linear regressions between the whole-region results
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versus the results within only pure/non-pure regions. We calculated the coefficient of

determination (R2) to measure the goodness of fit to evaluate the regressions.

We computed the enhancement gained by the developed WTV over the stan-

dard TV as:

∆error =
∣∣ ¯WTV error − ¯TV error

∣∣ (4.40)

Figures 4.14, 4.15, 4.16, and 4.17 show the scatter plots of the ∆error in

each WM region of interest against the ∆error in only pure regions (blue) and only

non-pure regions (green).

A least-squares fit was used to fit a line between pairs of quantities to describe

the relationship between predictor (defined in x-axis) and response (defined in y-axis)

variables. Here, the response variable is the ∆error in the whole white matter region

of interest, and the predictor variable is the ∆error in either corresponding pure or

non-pure regions.

Linear regression models the relation between a dependent, or response, vari-

able y and one or more independent, or predictor, variables x1, ..., xn. Simple linear

regression considers only one independent variable using the relation:

y = β0 + β1x+ ε (4.41)

Where β0 is the y-intercept, β1 is the slope (or regression coefficient), and ε is the

error term.

Starting with a set of n observed values of x and y given by (x1, y1), (x2, y2),

..., (xn, yn), we form a system of linear equations using the simple linear regression

relation. Following represents these equations in matrix form:
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y1

y2

.

.

.
yn

 =


1 x1

1 x2

. .

. .

. .
1 xn


[
β0

β1

]
(4.42)

Let:

Y =


y1

y2

.

.

.
yn

 , X =


1 x1

1 x2

. .

. .

. .
1 xn

 , B =

[
β0

β1

]
(4.43)

Now the parameters of regression (β0 and β1) are found by solving Y = XB relation.

Then, the coefficient of determination (R2) was calculated to measure the

goodness of fit. It is a measure that allows us to determine how certain one can be

in making predictions from a certain model. R2 value falls between 0 and 1, and a

closer value to 1 shows higher linear correlation between the predictor and response

variables:

R2 = 1−
∑n

i=1(yi − ŷi)2∑n
i=1(yi − ȳ)2

(4.44)

Where ŷi represents the estimated values of yi from the calculated least-squares fit,

and ȳ is the mean of y variable. A higher coefficient of determination (R2) for the

non-pure regions, as shown in figures 4.14, 4.15, 4.16, and 4.17, demonstrates that the

improvement of mean error in each WM region of interest (frontal, occipital, partial,

and temporal) is highly correlated to the improvement of mean error in their corre-

sponding non-pure areas. This is consistent with our expectation that enhancements

caused by the developed WTV approach in each region of interest is mainly due to

the enhancements in non-pure samples.
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Figure 4.14: Scatter plots of ∆error of FA in each WM region of interest against

the ∆error in only pure regions (blue) and only non-pure regions (green). A least-

squares fit was used to fit a line between pairs of quantities to describe the relationship

between predictor (defined in x-axis) and response (defined in y-axis) variables. The

coefficient of determination (R2) was calculated to measure the goodness of fit.
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Figure 4.15: Scatter plots of ∆error of MD in each WM region of interest against

the ∆error in only pure regions (blue) and only non-pure regions (green). A least-

squares fit was used to fit a line between pairs of quantities to describe the relationship

between predictor (defined in x-axis) and response (defined in y-axis) variables. The

coefficient of determination (R2) was calculated to measure the goodness of fit.
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Figure 4.16: Scatter plots of ∆error of RD in each WM region of interest against

the ∆error in only pure regions (blue) and only non-pure regions (green). A least-

squares fit was used to fit a line between pairs of quantities to describe the relationship

between predictor (defined in x-axis) and response (defined in y-axis) variables. The

coefficient of determination (R2) was calculated to measure the goodness of fit.
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Figure 4.17: Scatter plots of ∆error of AD in each WM region of interest against

the ∆error in only pure regions (blue) and only non-pure regions (green). A least-

squares fit was used to fit a line between pairs of quantities to describe the relationship

between predictor (defined in x-axis) and response (defined in y-axis) variables. The

coefficient of determination (R2) was calculated to measure the goodness of fit.
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4.5.4 Approach 3: Evaluation Based on the Differences Between Tensor

Proprieties

We compared the tensor properties of the reconstructed images to the tensor

properties of the HR baseline image for each test subject within four white matter

regions of interest selected in four different lobes of brain (frontal, parietal, temporal

and occipital) where partial volume encountered. The comparison is run within the

pure and non-pure regions as well, where pure and non-pure samples are computed

from a pure plugs mask that is generated from the low-resolution average b0 image

and the structural T1 and T2-weighted MR scans as described in chapter 3.

The third evaluation approach is designed to complement the approach 2 by

considering diffusion orientation that is not captured by RIS measures. In this study

we used Frobenius, Riemannian, and Kullback-Leibler tensor distances, described in

section 1.4.5, as the error metrics to quantitatively compare the diffusion tensors

from the baseline image and each or reconstructed images. Frobenius distance is not

a geodesic metric, and it is not invariant to linear changes of image coordinates, so its

application is limited in tensor images registration/segmentation. However, it is still

a good metric in our comparison evaluation where both baseline and reconstructed

images are from the same subject and are presented in the same physical coordinates.

For each test subject, the diffusion tensor images (DTI) were estimated for

each of reconstructed diffusion-weighted images (DWI) and the HR baseline DWI

image. Then, for each DTI voxel, we computed the distance between the diffusion

tensors from the HR baseline and each of reconstructed images. Finally, for each
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Table 4.4: Error mean value of all tensor metrics within each region of interest across
all subjects.

Tensor Region WTV TV IFFT p-value p-value
Metric Mean Mean Mean WTV WTV

Error Error Error vs. vs.
TV IFFT

Riemannian Frontal 1.42×10−1 1.54×10−1 1.54×10−1 ∗ ∗ ∗∗ ∗ ∗ ∗∗
Occipital 1.69×10−1 1.80×10−1 1.80×10−1 ∗∗ ∗∗
Parietal 1.54×10−1 1.72×10−1 1.73×10−1 ∗ ∗ ∗∗ ∗ ∗ ∗∗
Temporal 1.49×10−1 1.56×10−1 1.56×10−1 ∗ ∗

Kullback Frontal 7.57×10−2 8.31×10−2 8.32×10−2 ∗ ∗
-Leibler Occipital 8.64×10−2 9.75×10−2 9.76×10−2 ∗ ∗

Parietal 8.22×10−2 1.22×10−1 1.24×10−1 ∗ ∗ ∗ ∗ ∗ ∗
Temporal 7.76×10−2 8.37×10−2 8.38×10−2

Frobenius Frontal 8.23×10−5 8.81×10−5 8.82×10−5 ∗ ∗ ∗∗ ∗ ∗ ∗∗
Occipital 1.02×10−4 1.08×10−4 1.08×10−4 ∗ ∗
Parietal 9.08×10−5 9.83×10−5 9.83×10−5 ∗ ∗ ∗ ∗ ∗ ∗
Temporal 8.91×10−5 9.06×10−5 9.06×10−5

NOTE: ∗: p-value < 0.05, ∗∗: p-value < 0.01, ∗ ∗ ∗: p-value < 0.001, ∗ ∗ ∗∗: p-value
< 0.0001.

region of interest, the error metric is defined as the average distances over all voxels

within that region. Figures 4.18, 4.19, and 4.20 present the box plots of average errors

within each region of interest for each of super-resolution reconstruction methods. All

numeric results are summarized in table 4.4, where error metrics are averaged over

all test subjects.

As shown by presented quantitative results, the developed WTV method

demonstrates a significant improvement over the other two methods (standard TV

and zero-padded IFFT) in most regions of interest. In order to compare the quan-

titative results, paired t-test was performed and p − value < 0.05 was considered

significant.
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Figure 4.18: Comparing the average Riemannian error values within four WM regions

of interest between the HR baseline and each of reconstructed images by 3 different

methods: Developed edge-guided weighted-TV approach (WTV), standard TV, and

zero-padded IFFT. The WM regions of interests are selected in 4 different lobes of

brain (frontal, parietal, temporal and occipital) where partial volume encountered,

and the mean of error is computed in pure and non-pure regions as well.
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Figure 4.19: Comparing the average Kullback-Leibler error values within four WM

regions of interest between the HR baseline and each of reconstructed images by 3

different methods: Developed edge-guided weighted-TV approach (WTV), standard

TV, and zero-padded IFFT. The WM regions of interests are selected in 4 differ-

ent lobes of brain (frontal, parietal, temporal and occipital) where partial volume

encountered, and the mean of error is computed in pure and non-pure regions as well.
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Figure 4.20: Comparing the average Frobenius norm values within four WM regions

of interest between the HR baseline and each of reconstructed images by 3 different

methods: Developed edge-guided weighted-TV approach (WTV), standard TV, and

zero-padded IFFT. The WM regions of interests are selected in 4 different lobes of

brain (frontal, parietal, temporal and occipital) where partial volume encountered,

and the mean of error is computed in pure and non-pure regions as well.



www.manaraa.com

136

Same as approach 2, we performed a correlation analysis, between the whole-

region results versus the results within only pure/non-pure regions, to investigate

if the enhanced performance in each WM region of interest is mainly due to the

enhancement in their non-pure regions. The coefficient of determination (R2) was

calculated for each linear regression to evaluate the goodness of fit. Figures 4.21,

4.22, and 4.23 show the scatter plots of the ∆error, as computed in equation (4.40),

in each WM region of interest against the ∆error in only pure regions (blue) and only

non-pure regions (green). Also, a least-squares fit was used to fit a line between pairs

of quantities and the coefficient of determination (R2) was calculated as in equation

(4.44). All figures show a higher coefficient of determination (R2) for the non-pure

regions that indicates the enhancements caused by the developed WTV approach in

each region of interest is mainly due to the enhancements in non-pure samples as we

expected from the method section.

4.6 Discussion and Conclusions

We introduced a novel algorithm for super-resolution reconstruction of low-

resolution diffusion-weighted images using the prior anatomical information from the

higher resolution structural MR modality sources. We then used three different quan-

titative approaches to evaluate the performance of our algorithm with two common

methods in the literature: zero-padded IFFT, and standard total variation (TV).

Although TV works well for compressed sensing style sampling [113, 114, 115]

(when we have sparse samples equally from low and high frequencies), it performs
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Figure 4.21: Scatter plots of ∆error of Riemannian distance in each white matter

(WM) region of interest against the ∆error in only pure regions (blue) and only

non-pure regions (green). A least-squares fit was used to fit a line between pairs

of quantities to describe the relationship between predictor (defined in x-axis) and

response (defined in y-axis) variables. The coefficient of determination (R2) was

calculated to measure the goodness of fit.
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Figure 4.22: Scatter plots of ∆error of Kullback-Leibler distance in each white matter

(WM) region of interest against the ∆error in only pure regions (blue) and only

non-pure regions (green). A least-squares fit was used to fit a line between pairs

of quantities to describe the relationship between predictor (defined in x-axis) and

response (defined in y-axis) variables. The coefficient of determination (R2) was

calculated to measure the goodness of fit.
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Figure 4.23: Scatter plots of ∆error of Frobenius norm in each white matter (WM)

region of interest against the ∆error in only pure regions (blue) and only non-pure

regions (green). A least-squares fit was used to fit a line between pairs of quantities to

describe the relationship between predictor (defined in x-axis) and response (defined

in y-axis) variables. The coefficient of determination (R2) was calculated to measure

the goodness of fit.
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poorly for super-resolution (when mostly higher frequencies are missed) as our eval-

uation results showed a close performance for standard TV and zero-padded IFFT.

To overcome TV limitations in super-resolution reconstruction, we introduced

an edge-guided weighted-TV method (WTV) that uses the complementary high fre-

quency edge information from the other structural MR modalities provided in higher

spatial resolution. A weight map is generated from the edge information and is in-

corporated into the l1-norm optimization process. All of our evaluation approaches,

consisting of brain tractography, rotationally invariant scalars and tensor properties,

demonstrated a significant improvement in the performance of developed weighted-

TV algorithm over the standard TV and zero-padded IFFT.

Based on the definition of generated weight map, we expected to see a signif-

icant improvement on the performance of developed edge-guided weighted-TV over

the standard TV only in high frequency boundary regions where partial volume ef-

fects encounter. However, as the optimization process is performed in the frequency

domain, the generated weight map caused enhancements through all investigated

white matter (WM) regions of interest in the spatial domain including both pure and

non-pure regions. To investigate if the enhanced performance in each WM region of

interest is still mainly due to the enhancement in their non-pure regions, we performed

a correlation analysis to compute regression between the enhancement gained by the

developed WTV over the standard TV in each WM region of interest against the en-

hancement gained in only pure regions and only non-pure regions. The results showed

a higher coefficient of determination (R2) for the non-pure regions that demonstrates
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the enhancement gained in each WM region of interest (frontal, occipital, partial, and

temporal) is mainly due to the enhancement gained in their corresponding non-pure

regions.
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CHAPTER 5
CONCLUDING REMARKS

The main purpose of this thesis was to generate tools that benefit from com-

plementary information available from multiple structural and diffusion-weighted MR

imaging modalities to advance our interpretation of brain biological architecture.

We demonstrated that an improved interpretation of data in agreement with actual

anatomical definitions is achieved by identifying and addressing the partial volume

effects issues that occur when complementary information were combined näıvely.

First, we identified the limitations of previously developed multi-modal tools

for automated tissue classification of large-scale, multi-center data. In Chapter 2,

we modeled the unique anatomical states of each subject in longitudinal degenera-

tive studies using a non-parametric fuzzy k-Nearest Neighbor (k-NN) classifier. This

model augmented the output of expectation maximization (EM), a group specific

classification method that uses a priori knowledge for all subjects in an atlas-based

approach. We emphasized that using an atlas-based method is not sufficient for large-

scale, multi-center longitudinal studies, due to each subject having unique anatomical

states in a longitudinal degenerative study that may not be represented by prior prob-

ability distributions. Therefore, we developed a method to build up a model for each

individual subject using a k-NN classifier to complement the classification results

that EM produces. Chapter 2 also demonstrated segmentation enhancements when

multi-modal MR modalities (T1/T2-weighted) were acquired at the same high spa-

tial resolution with isotropic 1 mm3 voxel sizes. However, in many datasets provided
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from scanners with 1.5 Tesla scan protocol, the T2-weighted image is acquired at

lower spatial resolution than T1 (usually by a factor of 2 to 3).

In Chapter 3, we demonstrated that näıvely adding low-resolution multi-modal

information can adversely affect segmentation results. We investigated and explained

the reason by describing partial volume effects (PVE) issue that affect more spatial

samples at tissue boundaries when multi-modal scans are presented in different spa-

tial resolutions. Then, we developed a novel approach to deal with increased PVE

issue by using only those spatial samples that are not affected by partial volume

composition, termed as pure samples, for initialization/training of the classification

methods. The developed novel method operates in physical spatial domain and is not

limited by the constrains of different voxel lattice spaces of input modalities. Pure

samples were identified by computing a binary mask, called pure plugs mask. A novel

integrity metric, called Mahalanobis-weighted Euclidean distance was introduced to

decide if all spatial samples within a plug area belong to one anatomical tissue type.

Evaluation results proved enhanced segmentation quality for gray matter (GM) and

white matter (WM) when only pure samples are used in the training or initializa-

tion of the classification methods. Additionally, we demonstrated that multi-modal

classification accuracy, when second modality is low-resolution, approaches the seg-

mentation quality when all modalities are acquired in high-resolution. This technical

improvement directly improved segmentation quality for the longitudinal, multi-site,

international PREDICT-HD study [1], as now it was possible to use the low-resolution

T2-weighted modalities that were acquired during the first 7 years of study to en-
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hance the segmentation results previously generated using only T1-weighted scans.

We speculate that the developed method may help to reduce the scanning time and

cost in future clinical trails by dealing with PVE issue algorithmically, as this allows

the collection of a single modality in a high resolution and use the other modalities

acquired in lower spatial resolutions.

Chapters 2 and 3 demonstrated improved delineation of anatomical structures

in structural MRIs. Chapter 4 then suggested to use the information of anatomical

structures presented in high-resolution structural MR images as a priori knowledge to

enhance the super-resolution reconstruction (SRR) of diffusion-weighted MR modali-

ties that are acquired in low spatial resolution due to the time constraints of clinical re-

search. Image post-processing methods are an alternative to hardware improvements

that can enhance interpretation of DWI information. Providing super-resolution DWI

information that is guided by the high-resolution structural scans, a more accurate

assessment of characterization of brain white matter architecture and microstructure

is possible. We showed the limitations of standard total variation (TV) based recon-

struction approach, and introduced a novel edge-guided weighted-TV method that

incorporates complementary high-resolution information from structural MR modali-

ties into the l1-norm optimization process. Our evaluation approaches demonstrated

the superior performance of the developed super-resolution reconstruction method

in providing an accurate assessment of brain connectivity. The developed method

showed better performance in recovering the high-resolution rotationally invariant

scalar (RIS) measurements and high-resolution diffusion tensor properties in four
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white matter regions of interest selected in four different lobes of brain (frontal, pari-

etal, temporal and occipital) where partial volume encountered.

In conclusion, this doctoral work provided algorithmic developments for ap-

propriate integration of complementary multi-modal information in MR studies to

increase the sensitivity of volumetric and diffusion measures used by clinicians. This

can lead to improved clinical and observational trials for testing therapies that may

slow the progression of disease. Increasing the sensitivity of measures can lead to

a substantial decrease in the number of samples needed for longitudinal and cross-

sectional analysis that may reduce the cost of future studies.
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APPENDIX: ABBREVIATIONS

MRI - Magnetic Resonance Imaging

DWI - Diffusion Weighted Imaging

DTI - Diffusion Tensor Imaging

DT - Diffusion Tensor

RIS - Rotationally Invariant Scalars

FA - Fractional Anisotropy

MD - Mean Diffusivity

RD - Radial Diffusivity

AD - Axial Diffusivity

ADC - Apparent Diffusion Coefficient

GM - Gray Matter

WM - White Matter

CSF - Cerebrospinal Fluid

VB - Venous Blood

PVE - Partial Volume Effect

PVC - Partial Volume Coefficient

RV - Random Variable

EM - Expectation Maximization

TPM - Tissue Probability Maps

KNN - K-Nearest Neighbors algorithm

MD - Mahalanobis distance
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SRR - Super Resolution Reconstruction

HR - High Resolution

LR - Low Resolution

TV - Total Variation

WTV - Weighted Total Variation

SNR - Signal to Noise Ratio

HCP - Human Connectome Project

BC - Bhattacharyya Coefficient

AF - Arcuate Fascicle

CST - Cortico-spinal tract
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